tf.math.add_n
Stay organized with collections
Save and categorize content based on your preferences.
Adds all input tensors element-wise.
tf.math.add_n(
inputs, name=None
)
tf.math.add_n
performs the same operation as tf.math.accumulate_n
.
This op does not broadcast
its inputs. If you need broadcasting, use tf.math.add
(or the +
operator)
instead.
For example:
a = tf.constant([[3, 5], [4, 8]])
b = tf.constant([[1, 6], [2, 9]])
tf.math.add_n([a, b, a])
<tf.Tensor: shape=(2, 2), dtype=int32, numpy=
array([[ 7, 16],
[10, 25]], dtype=int32)>
Args |
inputs
|
A list of tf.Tensor or tf.IndexedSlices objects, each with the
same shape and type. tf.IndexedSlices objects will be converted into
dense tensors prior to adding.
|
name
|
A name for the operation (optional).
|
Returns |
A tf.Tensor of the same shape and type as the elements of inputs .
|
Raises |
ValueError
|
If inputs don't all have same shape and dtype or the shape
cannot be inferred.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-03-17 UTC.
[null,null,["Last updated 2023-03-17 UTC."],[],[],null,["# tf.math.add_n\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.10.1/tensorflow/python/ops/math_ops.py#L4007-L4059) |\n\nAdds all input tensors element-wise.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.add_n`](https://www.tensorflow.org/api_docs/python/tf/math/add_n)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.add_n`](https://www.tensorflow.org/api_docs/python/tf/math/add_n), [`tf.compat.v1.math.add_n`](https://www.tensorflow.org/api_docs/python/tf/math/add_n)\n\n\u003cbr /\u003e\n\n tf.math.add_n(\n inputs, name=None\n )\n\n[`tf.math.add_n`](../../tf/math/add_n) performs the same operation as [`tf.math.accumulate_n`](../../tf/math/accumulate_n).\n\nThis op does not [broadcast](https://docs.scipy.org/doc/numpy-1.13.0/user/basics.broadcasting.html)\nits inputs. If you need broadcasting, use [`tf.math.add`](../../tf/math/add) (or the `+` operator)\ninstead.\n\n#### For example:\n\n a = tf.constant([[3, 5], [4, 8]])\n b = tf.constant([[1, 6], [2, 9]])\n tf.math.add_n([a, b, a])\n \u003ctf.Tensor: shape=(2, 2), dtype=int32, numpy=\n array([[ 7, 16],\n [10, 25]], dtype=int32)\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `inputs` | A list of [`tf.Tensor`](../../tf/Tensor) or [`tf.IndexedSlices`](../../tf/IndexedSlices) objects, each with the same shape and type. [`tf.IndexedSlices`](../../tf/IndexedSlices) objects will be converted into dense tensors prior to adding. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A [`tf.Tensor`](../../tf/Tensor) of the same shape and type as the elements of `inputs`. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|----------------------------------------------------------------------------------|\n| `ValueError` | If `inputs` don't all have same shape and dtype or the shape cannot be inferred. |\n\n\u003cbr /\u003e"]]