|  View source on GitHub | 
Samples elements at random from the datasets in datasets.
tf.compat.v1.data.experimental.sample_from_datasets(
    datasets, weights=None, seed=None
)
Creates a dataset by interleaving elements of datasets with the weight[i]
probability of picking an element from dataset i. For example, suppose we
have 2 datasets:
dataset1 = tf.data.Dataset.range(0, 3)
dataset2 = tf.data.Dataset.range(100, 103)
Suppose also that we sample from these 2 datasets with the following weights:
sample_dataset = tf.data.experimental.sample_from_datasets(
    [dataset1, dataset2], weights=[0.5, 0.5])
One possible outcome of elements in sample_dataset is:
print(list(sample_dataset.as_numpy_iterator()))
# [100, 0, 1, 101, 2, 102]
| Args | |
|---|---|
| datasets | A list of tf.data.Datasetobjects with compatible structure. | 
| weights | (Optional.) A list of len(datasets)floating-point values whereweights[i]represents the probability with which an element should be
sampled fromdatasets[i], or atf.data.Datasetobject where each
element is such a list. Defaults to a uniform distribution acrossdatasets. | 
| seed | (Optional.) A tf.int64scalartf.Tensor, representing the
random seed that will be used to create the distribution. Seetf.random.set_seedfor behavior. | 
| Returns | |
|---|---|
| A dataset that interleaves elements from datasetsat random, according toweightsif provided, otherwise with uniform probability. | 
| Raises | |
|---|---|
| TypeError | If the datasetsorweightsarguments have the wrong type. | 
| ValueError | If the weightsargument is specified and does not match the
length of thedatasetselement. |