|  TensorFlow 1 version |  View source on GitHub | 
Generates parsing spec for tf.parse_example to be used with classifiers.
tf.estimator.classifier_parse_example_spec(
    feature_columns, label_key, label_dtype=tf.dtypes.int64, label_default=None,
    weight_column=None
)
If users keep data in tf.Example format, they need to call tf.parse_example with a proper feature spec. There are two main things that this utility helps:
- Users need to combine parsing spec of features with labels and weights (if any) since they are all parsed from same tf.Example instance. This utility combines these specs.
- It is difficult to map expected label by a classifier such as
DNNClassifierto corresponding tf.parse_example spec. This utility encodes it by getting related information from users (key, dtype).
Example output of parsing spec:
# Define features and transformations
feature_b = tf.feature_column.numeric_column(...)
feature_c_bucketized = tf.feature_column.bucketized_column(
  tf.feature_column.numeric_column("feature_c"), ...)
feature_a_x_feature_c = tf.feature_column.crossed_column(
    columns=["feature_a", feature_c_bucketized], ...)
feature_columns = [feature_b, feature_c_bucketized, feature_a_x_feature_c]
parsing_spec = tf.estimator.classifier_parse_example_spec(
    feature_columns, label_key='my-label', label_dtype=tf.string)
# For the above example, classifier_parse_example_spec would return the dict:
assert parsing_spec == {
  "feature_a": parsing_ops.VarLenFeature(tf.string),
  "feature_b": parsing_ops.FixedLenFeature([1], dtype=tf.float32),
  "feature_c": parsing_ops.FixedLenFeature([1], dtype=tf.float32)
  "my-label" : parsing_ops.FixedLenFeature([1], dtype=tf.string)
}
Example usage with a classifier:
feature_columns = # define features via tf.feature_column
estimator = DNNClassifier(
    n_classes=1000,
    feature_columns=feature_columns,
    weight_column='example-weight',
    label_vocabulary=['photos', 'keep', ...],
    hidden_units=[256, 64, 16])
# This label configuration tells the classifier the following:
# * weights are retrieved with key 'example-weight'
# * label is string and can be one of the following ['photos', 'keep', ...]
# * integer id for label 'photos' is 0, 'keep' is 1, ...
# Input builders
def input_fn_train():  # Returns a tuple of features and labels.
  features = tf.contrib.learn.read_keyed_batch_features(
      file_pattern=train_files,
      batch_size=batch_size,
      # creates parsing configuration for tf.parse_example
      features=tf.estimator.classifier_parse_example_spec(
          feature_columns,
          label_key='my-label',
          label_dtype=tf.string,
          weight_column='example-weight'),
      reader=tf.RecordIOReader)
   labels = features.pop('my-label')
   return features, labels
estimator.train(input_fn=input_fn_train)
| Args | |
|---|---|
| feature_columns | An iterable containing all feature columns. All items
should be instances of classes derived from FeatureColumn. | 
| label_key | A string identifying the label. It means tf.Example stores labels with this key. | 
| label_dtype | A tf.dtypeidentifies the type of labels. By default it istf.int64. If user defines alabel_vocabulary, this should be set astf.string.tf.float32labels are only supported for binary
classification. | 
| label_default | used as label if label_key does not exist in given
tf.Example. An example usage: let's say label_keyis 'clicked' and
tf.Example contains clicked data only for positive examples in following
formatkey:clicked, value:1. This means that if there is no data with
key 'clicked' it should count as negative example by settinglabel_deafault=0. Type of this value should be compatible withlabel_dtype. | 
| weight_column | A string or a NumericColumncreated bytf.feature_column.numeric_columndefining feature column representing
weights. It is used to down weight or boost examples during training. It
will be multiplied by the loss of the example. If it is a string, it is
used as a key to fetch weight tensor from thefeatures. If it is aNumericColumn, raw tensor is fetched by keyweight_column.key, then
weight_column.normalizer_fn is applied on it to get weight tensor. | 
| Returns | |
|---|---|
| A dict mapping each feature key to a FixedLenFeatureorVarLenFeaturevalue. | 
| Raises | |
|---|---|
| ValueError | If label is used in feature_columns. | 
| ValueError | If weight_column is used in feature_columns. | 
| ValueError | If any of the given feature_columnsis not a_FeatureColumninstance. | 
| ValueError | If weight_columnis not aNumericColumninstance. | 
| ValueError | if label_key is None. |