tf.compat.v1.keras.initializers.glorot_normal

The Glorot normal initializer, also called Xavier normal initializer.

Inherits From: VarianceScaling

Compat aliases for migration

See Migration guide for more details.

tf.compat.v1.glorot_normal_initializer, tf.compat.v1.initializers.glorot_normal

It draws samples from a truncated normal distribution centered on 0 with standard deviation (after truncation) given by stddev = sqrt(2 / (fan_in + fan_out)) where fan_in is the number of input units in the weight tensor and fan_out is the number of output units in the weight tensor.

seed A Python integer. Used to create random seeds. See tf.compat.v1.set_random_seed for behavior.
dtype Default data type, used if no dtype argument is provided when calling the initializer. Only floating point types are supported.

References:

Glorot et al., 2010 (pdf)

Methods

from_config

View source

Instantiates an initializer from a configuration dictionary.

Example:

initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)

Args
config A Python dictionary. It will typically be the output of get_config.

Returns
An Initializer instance.

get_config

View source

Returns the configuration of the initializer as a JSON-serializable dict.

Returns
A JSON-serializable Python dict.

__call__

View source

Returns a tensor object initialized as specified by the initializer.

Args
shape Shape of the tensor.
dtype Optional dtype of the tensor. If not provided use the initializer dtype.
partition_info Optional information about the possible partitioning of a tensor.