tf.feature_column.sequence_numeric_column
    
    
      
    
    
      
      Stay organized with collections
    
    
      
      Save and categorize content based on your preferences.
    
  
  
      
    
  
  
  
  
  
    
  
  
    
    
Returns a feature column that represents sequences of numeric data.
tf.feature_column.sequence_numeric_column(
    key, shape=(1,), default_value=0.0, dtype=tf.dtypes.float32, normalizer_fn=None
)
Example:
temperature = sequence_numeric_column('temperature')
columns = [temperature]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
sequence_feature_layer = SequenceFeatures(columns)
sequence_input, sequence_length = sequence_feature_layer(features)
sequence_length_mask = tf.sequence_mask(sequence_length)
rnn_cell = tf.keras.layers.SimpleRNNCell(hidden_size)
rnn_layer = tf.keras.layers.RNN(rnn_cell)
outputs, state = rnn_layer(sequence_input, mask=sequence_length_mask)
| Args | 
|---|
| key | A unique string identifying the input features. | 
| shape | The shape of the input data per sequence id. E.g. if shape=(2,),
each example must contain2 * sequence_lengthvalues. | 
| default_value | A single value compatible with dtypethat is used for
padding the sparse data into a denseTensor. | 
| dtype | The type of values. | 
| normalizer_fn | If not None, a function that can be used to normalize the
value of the tensor afterdefault_valueis applied for parsing.
Normalizer function takes the inputTensoras its argument, and returns
the outputTensor. (e.g. lambda x: (x - 3.0) / 4.2). Please note that
even though the most common use case of this function is normalization, it
can be used for any kind of Tensorflow transformations. | 
| Returns | 
|---|
| A SequenceNumericColumn. | 
| Raises | 
|---|
| TypeError | if any dimension in shape is not an int. | 
| ValueError | if any dimension in shape is not a positive integer. | 
| ValueError | if dtypeis not convertible totf.float32. | 
  
  
 
  
    
    
      
       
    
    
  
  
  Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
  Last updated 2021-05-14 UTC.
  
  
  
    
      [null,null,["Last updated 2021-05-14 UTC."],[],[]]