tf.keras.activations.hard_sigmoid
Hard sigmoid activation function.
View aliases
Compat aliases for migration
See
Migration guide for
more details.
tf.compat.v1.keras.activations.hard_sigmoid
tf.keras.activations.hard_sigmoid(
x
)
A faster approximation of the sigmoid activation.
For example:
a = tf.constant([-3.0,-1.0, 0.0,1.0,3.0], dtype = tf.float32)
b = tf.keras.activations.hard_sigmoid(a)
b.numpy()
array([0. , 0.3, 0.5, 0.7, 1. ], dtype=float32)
Returns |
The hard sigmoid activation, defined as:
if x < -2.5: return 0
if x > 2.5: return 1
if -2.5 <= x <= 2.5: return 0.2 * x + 0.5
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2021-05-14 UTC.
[null,null,["Last updated 2021-05-14 UTC."],[],[]]