tf.keras.layers.GlobalMaxPool1D

Global max pooling operation for 1D temporal data.

Inherits From: Layer, Module

Main aliases

tf.keras.layers.GlobalMaxPooling1D

Compat aliases for migration

See Migration guide for more details.

tf.compat.v1.keras.layers.GlobalMaxPool1D, tf.compat.v1.keras.layers.GlobalMaxPooling1D

Downsamples the input representation by taking the maximum value over the time dimension.

For example:

x = tf.constant([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])
x = tf.reshape(x, [3, 3, 1])
x
<tf.Tensor: shape=(3, 3, 1), dtype=float32, numpy=
array([[[1.], [2.], [3.]],
       [[4.], [5.], [6.]],
       [[7.], [8.], [9.]]], dtype=float32)>
max_pool_1d = tf.keras.layers.GlobalMaxPooling1D()
max_pool_1d(x)
<tf.Tensor: shape=(3, 1), dtype=float32, numpy=
array([[3.],
       [6.],
       [9.], dtype=float32)>

data_format A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, steps, features) while channels_first corresponds to inputs with shape (batch, features, steps).

Input shape:

  • If data_format='channels_last': 3D tensor with shape: (batch_size, steps, features)
  • If data_format='channels_first': 3D tensor with shape: (batch_size, features, steps)

Output shape:

2D tensor with shape (batch_size, features).