Update '*var' according to the Adam algorithm.
tf.raw_ops.ResourceApplyAdamWithAmsgrad(
    var, m, v, vhat, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad,
    use_locking=False, name=None
)
 $$\text{lr}_t := \mathrm{learning_rate} * \sqrt{1 - \beta_2^t} / (1 - \beta_1^t)$$ 
 $$m_t := \beta_1 * m_{t-1} + (1 - \beta_1) * g$$ 
 $$v_t := \beta_2 * v_{t-1} + (1 - \beta_2) * g * g$$ 
 $$\hat{v}_t := max{\hat{v}_{t-1}, v_t}$$ 
 $$\text{variable} := \text{variable} - \text{lr}_t * m_t / (\sqrt{\hat{v}_t} + \epsilon)$$ 
| Args | |
|---|---|
| var | A Tensorof typeresource. Should be from a Variable(). | 
| m | A Tensorof typeresource. Should be from a Variable(). | 
| v | A Tensorof typeresource. Should be from a Variable(). | 
| vhat | A Tensorof typeresource. Should be from a Variable(). | 
| beta1_power | A Tensor. Must be one of the following types:float32,float64,int32,uint8,int16,int8,complex64,int64,qint8,quint8,qint32,bfloat16,uint16,complex128,half,uint32,uint64.
Must be a scalar. | 
| beta2_power | A Tensor. Must have the same type asbeta1_power.
Must be a scalar. | 
| lr | A Tensor. Must have the same type asbeta1_power.
Scaling factor. Must be a scalar. | 
| beta1 | A Tensor. Must have the same type asbeta1_power.
Momentum factor. Must be a scalar. | 
| beta2 | A Tensor. Must have the same type asbeta1_power.
Momentum factor. Must be a scalar. | 
| epsilon | A Tensor. Must have the same type asbeta1_power.
Ridge term. Must be a scalar. | 
| grad | A Tensor. Must have the same type asbeta1_power. The gradient. | 
| use_locking | An optional bool. Defaults toFalse.
IfTrue, updating of the var, m, and v tensors will be protected
by a lock; otherwise the behavior is undefined, but may exhibit less
contention. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| The created Operation. |