tf.compat.v1.layers.Conv1D
Stay organized with collections
Save and categorize content based on your preferences.
1D convolution layer (e.g. temporal convolution).
Inherits From: Conv1D
, Layer
, Layer
, Module
tf.compat.v1.layers.Conv1D(
filters, kernel_size, strides=1, padding='valid',
data_format='channels_last', dilation_rate=1, activation=None,
use_bias=True, kernel_initializer=None, bias_initializer=tf.zeros_initializer(),
kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None,
kernel_constraint=None, bias_constraint=None, trainable=True, name=None,
**kwargs
)
This layer creates a convolution kernel that is convolved
(actually cross-correlated) with the layer input to produce a tensor of
outputs. If use_bias
is True (and a bias_initializer
is provided),
a bias vector is created and added to the outputs. Finally, if
activation
is not None
, it is applied to the outputs as well.
Args |
filters
|
Integer, the dimensionality of the output space (i.e. the number
of filters in the convolution).
|
kernel_size
|
An integer or tuple/list of a single integer, specifying the
length of the 1D convolution window.
|
strides
|
An integer or tuple/list of a single integer,
specifying the stride length of the convolution.
Specifying any stride value != 1 is incompatible with specifying
any dilation_rate value != 1.
|
padding
|
One of "valid" or "same" (case-insensitive).
"valid" means no padding. "same" results in padding evenly to
the left/right or up/down of the input such that output has the same
height/width dimension as the input.
|
data_format
|
A string, one of channels_last (default) or channels_first .
The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape
(batch, length, channels) while channels_first corresponds to
inputs with shape (batch, channels, length) .
|
dilation_rate
|
An integer or tuple/list of a single integer, specifying
the dilation rate to use for dilated convolution.
Currently, specifying any dilation_rate value != 1 is
incompatible with specifying any strides value != 1.
|
activation
|
Activation function. Set it to None to maintain a
linear activation.
|
use_bias
|
Boolean, whether the layer uses a bias.
|
kernel_initializer
|
An initializer for the convolution kernel.
|
bias_initializer
|
An initializer for the bias vector. If None, the default
initializer will be used.
|
kernel_regularizer
|
Optional regularizer for the convolution kernel.
|
bias_regularizer
|
Optional regularizer for the bias vector.
|
activity_regularizer
|
Optional regularizer function for the output.
|
kernel_constraint
|
Optional projection function to be applied to the
kernel after being updated by an Optimizer (e.g. used to implement
norm constraints or value constraints for layer weights). The function
must take as input the unprojected variable and must return the
projected variable (which must have the same shape). Constraints are
not safe to use when doing asynchronous distributed training.
|
bias_constraint
|
Optional projection function to be applied to the
bias after being updated by an Optimizer .
|
trainable
|
Boolean, if True also add variables to the graph collection
GraphKeys.TRAINABLE_VARIABLES (see tf.Variable ).
|
name
|
A string, the name of the layer.
|
Attributes |
graph
|
|
scope_name
|
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2021-05-14 UTC.
[null,null,["Last updated 2021-05-14 UTC."],[],[],null,["# tf.compat.v1.layers.Conv1D\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.5.0/tensorflow/python/keras/legacy_tf_layers/convolutional.py#L31-L119) |\n\n1D convolution layer (e.g. temporal convolution).\n\nInherits From: [`Conv1D`](../../../../tf/keras/layers/Conv1D), [`Layer`](../../../../tf/compat/v1/layers/Layer), [`Layer`](../../../../tf/keras/layers/Layer), [`Module`](../../../../tf/Module) \n\n tf.compat.v1.layers.Conv1D(\n filters, kernel_size, strides=1, padding='valid',\n data_format='channels_last', dilation_rate=1, activation=None,\n use_bias=True, kernel_initializer=None, bias_initializer=tf.zeros_initializer(),\n kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None,\n kernel_constraint=None, bias_constraint=None, trainable=True, name=None,\n **kwargs\n )\n\nThis layer creates a convolution kernel that is convolved\n(actually cross-correlated) with the layer input to produce a tensor of\noutputs. If `use_bias` is True (and a `bias_initializer` is provided),\na bias vector is created and added to the outputs. Finally, if\n`activation` is not `None`, it is applied to the outputs as well.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `filters` | Integer, the dimensionality of the output space (i.e. the number of filters in the convolution). |\n| `kernel_size` | An integer or tuple/list of a single integer, specifying the length of the 1D convolution window. |\n| `strides` | An integer or tuple/list of a single integer, specifying the stride length of the convolution. Specifying any stride value != 1 is incompatible with specifying any `dilation_rate` value != 1. |\n| `padding` | One of `\"valid\"` or `\"same\"` (case-insensitive). `\"valid\"` means no padding. `\"same\"` results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. |\n| `data_format` | A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, length, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, length)`. |\n| `dilation_rate` | An integer or tuple/list of a single integer, specifying the dilation rate to use for dilated convolution. Currently, specifying any `dilation_rate` value != 1 is incompatible with specifying any `strides` value != 1. |\n| `activation` | Activation function. Set it to None to maintain a linear activation. |\n| `use_bias` | Boolean, whether the layer uses a bias. |\n| `kernel_initializer` | An initializer for the convolution kernel. |\n| `bias_initializer` | An initializer for the bias vector. If None, the default initializer will be used. |\n| `kernel_regularizer` | Optional regularizer for the convolution kernel. |\n| `bias_regularizer` | Optional regularizer for the bias vector. |\n| `activity_regularizer` | Optional regularizer function for the output. |\n| `kernel_constraint` | Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. |\n| `bias_constraint` | Optional projection function to be applied to the bias after being updated by an `Optimizer`. |\n| `trainable` | Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see [`tf.Variable`](../../../../tf/Variable)). |\n| `name` | A string, the name of the layer. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|--------------|---------------|\n| `graph` | \u003cbr /\u003e \u003cbr /\u003e |\n| `scope_name` | \u003cbr /\u003e \u003cbr /\u003e |\n\n\u003cbr /\u003e"]]