TensorFlow 1 version
|
View source on GitHub
|
Computes the (weighted) mean of the given values.
Inherits From: Metric, Layer, Module
tf.keras.metrics.Mean(
name='mean', dtype=None
)
For example, if values is [1, 3, 5, 7] then the mean is 4. If the weights were specified as [1, 1, 0, 0] then the mean would be 2.
This metric creates two variables, total and count that are used to
compute the average of values. This average is ultimately returned as mean
which is an idempotent operation that simply divides total by count.
If sample_weight is None, weights default to 1.
Use sample_weight of 0 to mask values.
Args | |
|---|---|
name
|
(Optional) string name of the metric instance. |
dtype
|
(Optional) data type of the metric result. |
Standalone usage:
m = tf.keras.metrics.Mean()m.update_state([1, 3, 5, 7])m.result().numpy()4.0m.reset_state()m.update_state([1, 3, 5, 7], sample_weight=[1, 1, 0, 0])m.result().numpy()2.0
Usage with compile() API:
model.add_metric(tf.keras.metrics.Mean(name='mean_1')(outputs))
model.compile(optimizer='sgd', loss='mse')
Methods
reset_state
reset_state()
Resets all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
result
result()
Computes and returns the metric value tensor.
Result computation is an idempotent operation that simply calculates the metric value using the state variables.
update_state
update_state(
values, sample_weight=None
)
Accumulates statistics for computing the metric.
| Args | |
|---|---|
values
|
Per-example value. |
sample_weight
|
Optional weighting of each example. Defaults to 1. |
| Returns | |
|---|---|
| Update op. |
TensorFlow 1 version
View source on GitHub