|  TensorFlow 1 version |  View source on GitHub | 
Depthwise 2D convolution.
Inherits From: Conv2D, Layer, Module
tf.keras.layers.DepthwiseConv2D(
    kernel_size, strides=(1, 1), padding='valid', depth_multiplier=1,
    data_format=None, dilation_rate=(1, 1), activation=None, use_bias=True,
    depthwise_initializer='glorot_uniform',
    bias_initializer='zeros', depthwise_regularizer=None,
    bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None,
    bias_constraint=None, **kwargs
)
Depthwise convolution is a type of convolution in which a single convolutional filter is apply to each input channel (i.e. in a depthwise way). You can understand depthwise convolution as being the first step in a depthwise separable convolution.
It is implemented via the following steps:
- Split the input into individual channels.
- Convolve each input with the layer's kernel (called a depthwise kernel).
- Stack the convolved outputs together (along the channels axis).
Unlike a regular 2D convolution, depthwise convolution does not mix information across different input channels.
The depth_multiplier argument controls how many
output channels are generated per input channel in the depthwise step.
| Args | |
|---|---|
| kernel_size | An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions. | 
| strides | An integer or tuple/list of 2 integers,
specifying the strides of the convolution along the height and width.
Can be a single integer to specify the same value for
all spatial dimensions.
Specifying any stride value != 1 is incompatible with specifying
any dilation_ratevalue != 1. | 
| padding | one of 'valid'or'same'(case-insensitive)."valid"means no padding."same"results in padding with zeros evenly
to the left/right or up/down of the input such that output has the same
height/width dimension as the input. | 
| depth_multiplier | The number of depthwise convolution output channels
for each input channel.
The total number of depthwise convolution output
channels will be equal to filters_in * depth_multiplier. | 
| data_format | A string,
one of channels_last(default) orchannels_first.
The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch_size, height, width, channels)whilechannels_firstcorresponds to inputs with shape(batch_size, channels, height, width).
It defaults to theimage_data_formatvalue found in your
Keras config file at~/.keras/keras.json.
If you never set it, then it will be 'channels_last'. | 
| dilation_rate | An integer or tuple/list of 2 integers, specifying
the dilation rate to use for dilated convolution.
Currently, specifying any dilation_ratevalue != 1 is
incompatible with specifying anystridesvalue != 1. | 
| activation | Activation function to use.
If you don't specify anything, no activation is applied (
see keras.activations). | 
| use_bias | Boolean, whether the layer uses a bias vector. | 
| depthwise_initializer | Initializer for the depthwise kernel matrix (
see keras.initializers). If None, the default initializer (
'glorot_uniform') will be used. | 
| bias_initializer | Initializer for the bias vector (
see keras.initializers). If None, the default initializer (
'zeros') will bs used. | 
| depthwise_regularizer | Regularizer function applied to
the depthwise kernel matrix (see keras.regularizers). | 
| bias_regularizer | Regularizer function applied to the bias vector (
see keras.regularizers). | 
| activity_regularizer | Regularizer function applied to
the output of the layer (its 'activation') (
see keras.regularizers). | 
| depthwise_constraint | Constraint function applied to
the depthwise kernel matrix (
see keras.constraints). | 
| bias_constraint | Constraint function applied to the bias vector (
see keras.constraints). | 
Input shape:
4D tensor with shape:
[batch_size, channels, rows, cols] if data_format='channels_first'
or 4D tensor with shape:
[batch_size, rows, cols, channels] if data_format='channels_last'.
Output shape:
4D tensor with shape:
[batch_size, channels * depth_multiplier, new_rows, new_cols] if
data_format='channels_first' or 4D tensor with shape:
[batch_size, new_rows, new_cols, channels * depth_multiplier] if
data_format='channels_last'. rows and cols values might have
changed due to padding.
| Returns | |
|---|---|
| A tensor of rank 4 representing activation(depthwiseconv2d(inputs, kernel) + bias). | 
| Raises | |
|---|---|
| ValueError | if paddingis "causal". | 
| ValueError | when both strides> 1 anddilation_rate> 1. |