Integer, the dimensionality of the output space (i.e. the number
of filters in the convolution).
kernel_size
An integer or tuple/list of 3 integers, specifying the
depth, height and width of the 3D convolution window.
Can be a single integer to specify the same value for all spatial
dimensions.
strides
An integer or tuple/list of 3 integers, specifying the strides
of the convolution along the depth, height and width.
Can be a single integer to specify the same value for all spatial
dimensions.
padding
One of "valid" or "same" (case-insensitive).
"valid" means no padding. "same" results in padding evenly to
the left/right or up/down of the input such that output has the same
height/width dimension as the input.
data_format
A string, one of channels_last (default) or channels_first.
The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape
(batch, depth, height, width, channels) while channels_first
corresponds to inputs with shape
(batch, channels, depth, height, width).
activation
Activation function. Set it to None to maintain a
linear activation.
use_bias
Boolean, whether the layer uses a bias.
kernel_initializer
An initializer for the convolution kernel.
bias_initializer
An initializer for the bias vector. If None, the default
initializer will be used.
kernel_regularizer
Optional regularizer for the convolution kernel.
bias_regularizer
Optional regularizer for the bias vector.
activity_regularizer
Optional regularizer function for the output.
kernel_constraint
Optional projection function to be applied to the
kernel after being updated by an Optimizer (e.g. used to implement
norm constraints or value constraints for layer weights). The function
must take as input the unprojected variable and must return the
projected variable (which must have the same shape). Constraints are
not safe to use when doing asynchronous distributed training.
bias_constraint
Optional projection function to be applied to the
bias after being updated by an Optimizer.
trainable
Boolean, if True also add variables to the graph collection
GraphKeys.TRAINABLE_VARIABLES (see tf.Variable).
[null,null,["Last updated 2021-08-16 UTC."],[],[],null,["# tf.compat.v1.layers.Conv3DTranspose\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/master/keras/legacy_tf_layers/convolutional.py#L1687-L1795) |\n\nTransposed 3D convolution layer (sometimes called 3D Deconvolution).\n\nInherits From: [`Conv3DTranspose`](../../../../tf/keras/layers/Conv3DTranspose), [`Conv3D`](../../../../tf/keras/layers/Conv3D), [`Layer`](../../../../tf/compat/v1/layers/Layer), [`Layer`](../../../../tf/keras/layers/Layer), [`Module`](../../../../tf/Module) \n\n tf.compat.v1.layers.Conv3DTranspose(\n filters, kernel_size, strides=(1, 1, 1), padding='valid',\n data_format='channels_last', activation=None, use_bias=True,\n kernel_initializer=None, bias_initializer=tf.compat.v1.zeros_initializer(),\n kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None,\n kernel_constraint=None, bias_constraint=None, trainable=True, name=None,\n **kwargs\n )\n\n\u003cbr /\u003e\n\nMigrate to TF2\n--------------\n\n\u003cbr /\u003e\n\n| **Caution:** This API was designed for TensorFlow v1. Continue reading for details on how to migrate from this API to a native TensorFlow v2 equivalent. See the [TensorFlow v1 to TensorFlow v2 migration guide](https://www.tensorflow.org/guide/migrate) for instructions on how to migrate the rest of your code.\n\nThis API is not compatible with eager execution or [`tf.function`](../../../../tf/function).\n\nPlease refer to [tf.layers section of the migration guide](https://www.tensorflow.org/guide/migrate#models_based_on_tflayers)\nto migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2\nlayer is [`tf.keras.layers.Conv3DTranspose`](../../../../tf/keras/layers/Conv3DTranspose).\n\n#### Structural Mapping to Native TF2\n\nNone of the supported arguments have changed name.\n\nBefore: \n\n conv = tf.compat.v1.layers.Conv3DTranspose(filters=3, kernel_size=3)\n\nAfter: \n\n conv = tf.keras.layers.Conv3DTranspose(filters=3, kernels_size=3)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\nDescription\n-----------\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `filters` | Integer, the dimensionality of the output space (i.e. the number of filters in the convolution). |\n| `kernel_size` | An integer or tuple/list of 3 integers, specifying the depth, height and width of the 3D convolution window. Can be a single integer to specify the same value for all spatial dimensions. |\n| `strides` | An integer or tuple/list of 3 integers, specifying the strides of the convolution along the depth, height and width. Can be a single integer to specify the same value for all spatial dimensions. |\n| `padding` | One of `\"valid\"` or `\"same\"` (case-insensitive). `\"valid\"` means no padding. `\"same\"` results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input. |\n| `data_format` | A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, depth, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, depth, height, width)`. |\n| `activation` | Activation function. Set it to `None` to maintain a linear activation. |\n| `use_bias` | Boolean, whether the layer uses a bias. |\n| `kernel_initializer` | An initializer for the convolution kernel. |\n| `bias_initializer` | An initializer for the bias vector. If `None`, the default initializer will be used. |\n| `kernel_regularizer` | Optional regularizer for the convolution kernel. |\n| `bias_regularizer` | Optional regularizer for the bias vector. |\n| `activity_regularizer` | Optional regularizer function for the output. |\n| `kernel_constraint` | Optional projection function to be applied to the kernel after being updated by an `Optimizer` (e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training. |\n| `bias_constraint` | Optional projection function to be applied to the bias after being updated by an `Optimizer`. |\n| `trainable` | Boolean, if `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see [`tf.Variable`](../../../../tf/Variable)). |\n| `name` | A string, the name of the layer. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|--------------|---------------|\n| `graph` | \u003cbr /\u003e \u003cbr /\u003e |\n| `scope_name` | \u003cbr /\u003e \u003cbr /\u003e |\n\n\u003cbr /\u003e"]]