View source on GitHub
  
 | 
Average pooling layer for 3D inputs (e.g. volumes).
tf.compat.v1.layers.average_pooling3d(
    inputs, pool_size, strides, padding='valid',
    data_format='channels_last', name=None
)
Migrate to TF2
This API is not compatible with eager execution or tf.function.
Please refer to tf.layers section of the migration guide
to migrate a TensorFlow v1 model to Keras. The corresponding TensorFlow v2
layer is tf.keras.layers.AveragePooling3D.
Structural Mapping to Native TF2
None of the supported arguments have changed name.
Before:
 y = tf.compat.v1.layers.average_pooling3d(x, pool_size=2, strides=2)
After:
To migrate code using TF1 functional layers use the Keras Functional API:
 x = tf.keras.Input((28, 28, 1))
 y = tf.keras.layers.AveragePooling3D(pool_size=2, strides=2)(x)
 model = tf.keras.Model(x, y)
Description
Args | |
|---|---|
inputs
 | 
The tensor over which to pool. Must have rank 5. | 
pool_size
 | 
An integer or tuple/list of 3 integers: (pool_depth, pool_height, pool_width) specifying the size of the pooling window. Can be a single integer to specify the same value for all spatial dimensions. | 
strides
 | 
An integer or tuple/list of 3 integers, specifying the strides of the pooling operation. Can be a single integer to specify the same value for all spatial dimensions. | 
padding
 | 
A string. The padding method, either 'valid' or 'same'. Case-insensitive. | 
data_format
 | 
A string. The ordering of the dimensions in the inputs.
channels_last (default) and channels_first are supported.
channels_last corresponds to inputs with shape
(batch, depth, height, width, channels) while channels_first
corresponds to inputs with shape
(batch, channels, depth, height, width).
 | 
name
 | 
A string, the name of the layer. | 
Returns | |
|---|---|
| Output tensor. | 
Raises | |
|---|---|
ValueError
 | 
if eager execution is enabled. | 
    View source on GitHub