Compute the Gaussian Error Linear Unit (GELU) activation function.
tf.nn.gelu(
    features, approximate=False, name=None
)
Gaussian error linear unit (GELU) computes
x * P(X <= x), where P(X) ~ N(0, 1).
The (GELU) nonlinearity weights inputs by their value, rather than gates
inputs by their sign as in ReLU.
For example:
x = tf.constant([-3.0, -1.0, 0.0, 1.0, 3.0], dtype=tf.float32)
y = tf.nn.gelu(x)
y.numpy()
array([-0.00404951, -0.15865529,  0.        ,  0.8413447 ,  2.9959507 ],
    dtype=float32)
y = tf.nn.gelu(x, approximate=True)
y.numpy()
array([-0.00363752, -0.15880796,  0.        ,  0.841192  ,  2.9963627 ],
    dtype=float32)
Args | 
features
 | 
A Tensor representing preactivation values.
 | 
approximate
 | 
An optional bool. Defaults to False. Whether to enable
approximation.
 | 
name
 | 
A name for the operation (optional).
 | 
Returns | 
A Tensor with the same type as features.
 | 
References:
Gaussian Error Linear Units (GELUs).