tf.raw_ops.ApplyAdam

Update '*var' according to the Adam algorithm.

Compat aliases for migration

See Migration guide for more details.

tf.compat.v1.raw_ops.ApplyAdam

lrt:=learning\_rate1beta2t/(1beta1t)
mt:=beta1mt1+(1beta1)g
vt:=beta2vt1+(1beta2)gg
variable:=variablelrtmt/(vt+ϵ)

var A mutable Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, complex64, int64, qint8, quint8, qint32, bfloat16, uint16, complex128, half, uint32, uint64. Should be from a Variable().
m A mutable Tensor. Must have the same type as var. Should be from a Variable().
v A mutable Tensor. Must have the same type as var. Should be from a Variable().
beta1_power A Tensor. Must have the same type as var. Must be a scalar.
beta2_power A Tensor. Must have the same type as var. Must be a scalar.
lr A Tensor. Must have the same type as var. Scaling factor. Must be a scalar.
beta1 A Tensor. Must have the same type as var. Momentum factor. Must be a scalar.
beta2 A Tensor. Must have the same type as var. Momentum factor. Must be a scalar.
epsilon A Tensor. Must have the same type as var. Ridge term. Must be a scalar.
grad A Tensor. Must have the same type as var. The gradient.
use_locking An optional bool. Defaults to False. If True, updating of the var, m, and v tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
use_nesterov An optional bool. Defaults to False. If True, uses the nesterov update.
name A name for the operation (optional).

A mutable Tensor. Has the same type as var.