View source on GitHub |
Optimization parameters for stochastic gradient descent for TPU embeddings.
tf.compat.v1.tpu.experimental.StochasticGradientDescentParameters(
learning_rate: float,
clip_weight_min: Optional[float] = None,
clip_weight_max: Optional[float] = None,
weight_decay_factor: Optional[float] = None,
multiply_weight_decay_factor_by_learning_rate: Optional[bool] = None,
clip_gradient_min: Optional[float] = None,
clip_gradient_max: Optional[float] = None
)
Pass this to tf.estimator.tpu.experimental.EmbeddingConfigSpec
via the
optimization_parameters
argument to set the optimizer and its parameters.
See the documentation for tf.estimator.tpu.experimental.EmbeddingConfigSpec
for more details.
estimator = tf.estimator.tpu.TPUEstimator(
...
embedding_config_spec=tf.estimator.tpu.experimental.EmbeddingConfigSpec(
...
optimization_parameters=(
tf.tpu.experimental.StochasticGradientDescentParameters(0.1))))
Args | |
---|---|
learning_rate
|
a floating point value. The learning rate. |
clip_weight_min
|
the minimum value to clip by; None means -infinity. |
clip_weight_max
|
the maximum value to clip by; None means +infinity. |
weight_decay_factor
|
amount of weight decay to apply; None means that the weights are not decayed. |
multiply_weight_decay_factor_by_learning_rate
|
if true,
weight_decay_factor is multiplied by the current learning rate.
|
clip_gradient_min
|
the minimum value to clip by; None means -infinity. |
clip_gradient_max
|
the maximum value to clip by; None means +infinity. |