View source on GitHub
|
Configuration for passing a RaggedTensor input feature.
tf.io.RaggedFeature(
dtype, value_key=None, partitions=(), row_splits_dtype=tf.dtypes.int32,
validate=False
)
value_key specifies the feature key for a variable-length list of values;
and partitions specifies zero or more feature keys for partitioning those
values into higher dimensions. Each element of partitions must be one of
the following:
tf.io.RaggedFeature.RowSplits(key: string)tf.io.RaggedFeature.RowLengths(key: string)tf.io.RaggedFeature.RowStarts(key: string)tf.io.RaggedFeature.RowLimits(key: string)tf.io.RaggedFeature.ValueRowIds(key: string)tf.io.RaggedFeature.UniformRowLength(length: int).
Where key is a feature key whose values are used to partition the values.
Partitions are listed from outermost to innermost.
If
len(partitions) == 0(the default), then:- A feature from a single
tf.Exampleis parsed into a 1Dtf.Tensor. - A feature from a batch of
tf.Examples is parsed into a 2Dtf.RaggedTensor, where the outer dimension is the batch dimension, and the inner (ragged) dimension is the feature length in each example.
- A feature from a single
If
len(partitions) == 1, then:A feature from a single
tf.Exampleis parsed into a 2Dtf.RaggedTensor, where the values taken from thevalue_keyare separated into rows using the partition key.A feature from a batch of
tf.Examples is parsed into a 3Dtf.RaggedTensor, where the outer dimension is the batch dimension, the two inner dimensions are formed by separating thevalue_keyvalues from each example into rows using that example's partition key.
If
len(partitions) > 1, then:A feature from a single
tf.Exampleis parsed into atf.RaggedTensorwhose rank islen(partitions)+1, and whose ragged_rank islen(partitions).A feature from a batch of
tf.Examples is parsed into atf.RaggedTensorwhose rank islen(partitions)+2and whose ragged_rank islen(partitions)+1, where the outer dimension is the batch dimension.
There is one exception: if the final (i.e., innermost) element(s) of
partitions are UniformRowLengths, then the values are simply reshaped (as
a higher-dimensional tf.Tensor), rather than being wrapped in a
tf.RaggedTensor.
Examples
import google.protobuf.text_format as pbtextexample_batch = [pbtext.Merge(r'''features {feature {key: "v" value {int64_list {value: [3, 1, 4, 1, 5, 9]} } }feature {key: "s1" value {int64_list {value: [0, 2, 3, 3, 6]} } }feature {key: "s2" value {int64_list {value: [0, 2, 3, 4]} } }}''', tf.train.Example()).SerializeToString(),pbtext.Merge(r'''features {feature {key: "v" value {int64_list {value: [2, 7, 1, 8, 2, 8, 1]} } }feature {key: "s1" value {int64_list {value: [0, 3, 4, 5, 7]} } }feature {key: "s2" value {int64_list {value: [0, 1, 1, 4]} } }}''', tf.train.Example()).SerializeToString()]
features = {# Zero partitions: returns 1D tf.Tensor for each Example.'f1': tf.io.RaggedFeature(value_key="v", dtype=tf.int64),# One partition: returns 2D tf.RaggedTensor for each Example.'f2': tf.io.RaggedFeature(value_key="v", dtype=tf.int64, partitions=[tf.io.RaggedFeature.RowSplits("s1")]),# Two partitions: returns 3D tf.RaggedTensor for each Example.'f3': tf.io.RaggedFeature(value_key="v", dtype=tf.int64, partitions=[tf.io.RaggedFeature.RowSplits("s2"),tf.io.RaggedFeature.RowSplits("s1")])}
feature_dict = tf.io.parse_single_example(example_batch[0], features)for (name, val) in sorted(feature_dict.items()):print('%s: %s' % (name, val))f1: tf.Tensor([3 1 4 1 5 9], shape=(6,), dtype=int64)f2: <tf.RaggedTensor [[3, 1], [4], [], [1, 5, 9]]>f3: <tf.RaggedTensor [[[3, 1], [4]], [[]], [[1, 5, 9]]]>
feature_dict = tf.io.parse_example(example_batch, features)for (name, val) in sorted(feature_dict.items()):print('%s: %s' % (name, val))f1: <tf.RaggedTensor [[3, 1, 4, 1, 5, 9],[2, 7, 1, 8, 2, 8, 1]]>f2: <tf.RaggedTensor [[[3, 1], [4], [], [1, 5, 9]],[[2, 7, 1], [8], [2], [8, 1]]]>f3: <tf.RaggedTensor [[[[3, 1], [4]], [[]], [[1, 5, 9]]],[[[2, 7, 1]], [], [[8], [2], [8, 1]]]]>
Fields:
dtype: Data type of theRaggedTensor. Must be one of:tf.dtypes.int64,tf.dtypes.float32,tf.dtypes.string.value_key: (Optional.) Key for aFeaturein the inputExample, whose parsedTensorwill be the resultingRaggedTensor.flat_values. If not specified, then it defaults to the key for thisRaggedFeature.partitions: (Optional.) A list of objects specifying the row-partitioning tensors (from outermost to innermost). Each entry in this list must be one of:tf.io.RaggedFeature.RowSplits(key: string)tf.io.RaggedFeature.RowLengths(key: string)tf.io.RaggedFeature.RowStarts(key: string)tf.io.RaggedFeature.RowLimits(key: string)tf.io.RaggedFeature.ValueRowIds(key: string)tf.io.RaggedFeature.UniformRowLength(length: int). Wherekeyis a key for aFeaturein the inputExample, whose parsedTensorwill be the resulting row-partitioning tensor.
row_splits_dtype: (Optional.) Data type for the row-partitioning tensor(s). One ofint32orint64. Defaults toint32.validate: (Optional.) Boolean indicating whether or not to validate that the input values form a valid RaggedTensor. Defaults toFalse.
Attributes | |
|---|---|
dtype
|
|
value_key
|
|
partitions
|
|
row_splits_dtype
|
|
validate
|
|
View source on GitHub