|  TensorFlow 1 version |  View source on GitHub | 
Cropping layer for 2D input (e.g. picture).
tf.keras.layers.Cropping2D(
    cropping=((0, 0), (0, 0)), data_format=None, **kwargs
)
It crops along spatial dimensions, i.e. height and width.
Examples:
input_shape = (2, 28, 28, 3)x = np.arange(np.prod(input_shape)).reshape(input_shape)y = tf.keras.layers.Cropping2D(cropping=((2, 2), (4, 4)))(x)print(y.shape)(2, 24, 20, 3)
| Args | |
|---|---|
| cropping | Int, or tuple of 2 ints, or tuple of 2 tuples of 2 ints. 
 | 
| data_format | A string,
one of channels_last(default) orchannels_first.
The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch_size, height, width, channels)whilechannels_firstcorresponds to inputs with shape(batch_size, channels, height, width).
It defaults to theimage_data_formatvalue found in your
Keras config file at~/.keras/keras.json.
If you never set it, then it will be "channels_last". | 
Input shape:
4D tensor with shape:
- If data_formatis"channels_last":(batch_size, rows, cols, channels)
- If data_formatis"channels_first":(batch_size, channels, rows, cols)
Output shape:
4D tensor with shape:
- If data_formatis"channels_last":(batch_size, cropped_rows, cropped_cols, channels)
- If data_formatis"channels_first":(batch_size, channels, cropped_rows, cropped_cols)