|  TensorFlow 1 version |  View source on GitHub | 
Global max pooling operation for 1D temporal data.
tf.keras.layers.GlobalMaxPool1D(
    data_format='channels_last', keepdims=False, **kwargs
)
Downsamples the input representation by taking the maximum value over the time dimension.
For example:
x = tf.constant([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])x = tf.reshape(x, [3, 3, 1])x<tf.Tensor: shape=(3, 3, 1), dtype=float32, numpy=array([[[1.], [2.], [3.]],[[4.], [5.], [6.]],[[7.], [8.], [9.]]], dtype=float32)>max_pool_1d = tf.keras.layers.GlobalMaxPooling1D()max_pool_1d(x)<tf.Tensor: shape=(3, 1), dtype=float32, numpy=array([[3.],[6.],[9.], dtype=float32)>
| Args | |
|---|---|
| data_format | A string,
one of channels_last(default) orchannels_first.
The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch, steps, features)whilechannels_firstcorresponds to inputs with shape(batch, features, steps). | 
| keepdims | A boolean, whether to keep the temporal dimension or not.
If keepdimsisFalse(default), the rank of the tensor is reduced
for spatial dimensions.
IfkeepdimsisTrue, the temporal dimension are retained with
length 1.
The behavior is the same as fortf.reduce_maxornp.max. | 
Input shape:
- If data_format='channels_last': 3D tensor with shape:(batch_size, steps, features)
- If data_format='channels_first': 3D tensor with shape:(batch_size, features, steps)
Output shape:
- If keepdims=False: 2D tensor with shape(batch_size, features).
- If keepdims=True:- If data_format='channels_last': 3D tensor with shape(batch_size, 1, features)
- If data_format='channels_first': 3D tensor with shape(batch_size, features, 1)
 
- If