tf.keras.layers.RandomFlip
Stay organized with collections
Save and categorize content based on your preferences.
Randomly flip each image horizontally and vertically.
Inherits From: Layer
, Module
tf.keras.layers.RandomFlip(
mode=HORIZONTAL_AND_VERTICAL, seed=None, **kwargs
)
This layer will flip the images based on the mode
attribute.
During inference time, the output will be identical to input. Call the layer
with training=True
to flip the input.
3D (unbatched) or 4D (batched) tensor with shape:
(..., height, width, channels)
, in "channels_last"
format.
Output shape:
3D (unbatched) or 4D (batched) tensor with shape:
(..., height, width, channels)
, in "channels_last"
format.
Attributes |
mode
|
String indicating which flip mode to use. Can be "horizontal" ,
"vertical" , or "horizontal_and_vertical" . Defaults to
"horizontal_and_vertical" . "horizontal" is a left-right flip and
"vertical" is a top-bottom flip.
|
seed
|
Integer. Used to create a random seed.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2021-08-16 UTC.
[null,null,["Last updated 2021-08-16 UTC."],[],[],null,["# tf.keras.layers.RandomFlip\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/master/keras/layers/preprocessing/image_preprocessing.py#L371-L446) |\n\nRandomly flip each image horizontally and vertically.\n\nInherits From: [`Layer`](../../../tf/keras/layers/Layer), [`Module`](../../../tf/Module)\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.layers.experimental.preprocessing.RandomFlip`](https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomFlip)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.layers.RandomFlip`](https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomFlip), [`tf.compat.v1.keras.layers.experimental.preprocessing.RandomFlip`](https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomFlip)\n\n\u003cbr /\u003e\n\n tf.keras.layers.RandomFlip(\n mode=HORIZONTAL_AND_VERTICAL, seed=None, **kwargs\n )\n\nThis layer will flip the images based on the `mode` attribute.\nDuring inference time, the output will be identical to input. Call the layer\nwith `training=True` to flip the input.\n\n#### Input shape:\n\n3D (unbatched) or 4D (batched) tensor with shape:\n`(..., height, width, channels)`, in `\"channels_last\"` format.\n\n#### Output shape:\n\n3D (unbatched) or 4D (batched) tensor with shape:\n`(..., height, width, channels)`, in `\"channels_last\"` format.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `mode` | String indicating which flip mode to use. Can be `\"horizontal\"`, `\"vertical\"`, or `\"horizontal_and_vertical\"`. Defaults to `\"horizontal_and_vertical\"`. `\"horizontal\"` is a left-right flip and `\"vertical\"` is a top-bottom flip. |\n| `seed` | Integer. Used to create a random seed. |\n\n\u003cbr /\u003e"]]