|  TensorFlow 1 version |  View source on GitHub | 
Depthwise separable 2D convolution.
tf.keras.layers.SeparableConv2D(
    filters, kernel_size, strides=(1, 1), padding='valid',
    data_format=None, dilation_rate=(1, 1), depth_multiplier=1, activation=None,
    use_bias=True, depthwise_initializer='glorot_uniform',
    pointwise_initializer='glorot_uniform',
    bias_initializer='zeros', depthwise_regularizer=None,
    pointwise_regularizer=None, bias_regularizer=None, activity_regularizer=None,
    depthwise_constraint=None, pointwise_constraint=None, bias_constraint=None,
    **kwargs
)
Separable convolutions consist of first performing
a depthwise spatial convolution
(which acts on each input channel separately)
followed by a pointwise convolution which mixes the resulting
output channels. The depth_multiplier argument controls how many
output channels are generated per input channel in the depthwise step.
Intuitively, separable convolutions can be understood as a way to factorize a convolution kernel into two smaller kernels, or as an extreme version of an Inception block.
| Args | |
|---|---|
| filters | Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution). | 
| kernel_size | An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions. | 
| strides | An integer or tuple/list of 2 integers,
specifying the strides of the convolution along the height and width.
Can be a single integer to specify the same value for
all spatial dimensions. Current implementation only supports equal 
length strides in the row and column dimensions.
Specifying any stride value != 1 is incompatible with specifying
any dilation_ratevalue != 1. | 
| padding | one of "valid"or"same"(case-insensitive)."valid"means no padding."same"results in padding with zeros evenly
to the left/right or up/down of the input such that output has the same
height/width dimension as the input. | 
| data_format | A string,
one of channels_last(default) orchannels_first.
The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch_size, height, width, channels)whilechannels_firstcorresponds to inputs with shape(batch_size, channels, height, width).
It defaults to theimage_data_formatvalue found in your
Keras config file at~/.keras/keras.json.
If you never set it, then it will be "channels_last". | 
| dilation_rate | An integer or tuple/list of 2 integers, specifying
the dilation rate to use for dilated convolution.
Currently, specifying any dilation_ratevalue != 1 is
incompatible with specifying anystridesvalue != 1. | 
| depth_multiplier | The number of depthwise convolution output channels
for each input channel.
The total number of depthwise convolution output
channels will be equal to filters_in * depth_multiplier. | 
| activation | Activation function to use.
If you don't specify anything, no activation is applied (
see keras.activations). | 
| use_bias | Boolean, whether the layer uses a bias vector. | 
| depthwise_initializer | An initializer for the depthwise convolution kernel (
see keras.initializers). If None, then the default initializer (
'glorot_uniform') will be used. | 
| pointwise_initializer | An initializer for the pointwise convolution kernel (
see keras.initializers). If None, then the default initializer 
('glorot_uniform') will be used. | 
| bias_initializer | An initializer for the bias vector. If None, the default
initializer ('zeros') will be used (see keras.initializers). | 
| depthwise_regularizer | Regularizer function applied to
the depthwise kernel matrix (see keras.regularizers). | 
| pointwise_regularizer | Regularizer function applied to
the pointwise kernel matrix (see keras.regularizers). | 
| bias_regularizer | Regularizer function applied to the bias vector (
see keras.regularizers). | 
| activity_regularizer | Regularizer function applied to
the output of the layer (its "activation") (
see keras.regularizers). | 
| depthwise_constraint | Constraint function applied to
the depthwise kernel matrix (
see keras.constraints). | 
| pointwise_constraint | Constraint function applied to
the pointwise kernel matrix (
see keras.constraints). | 
| bias_constraint | Constraint function applied to the bias vector (
see keras.constraints). | 
Input shape:
4D tensor with shape:
(batch_size, channels, rows, cols) if data_format='channels_first'
or 4D tensor with shape:
(batch_size, rows, cols, channels) if data_format='channels_last'.
Output shape:
4D tensor with shape:
(batch_size, filters, new_rows, new_cols) if data_format='channels_first'
or 4D tensor with shape:
(batch_size, new_rows, new_cols, filters) if data_format='channels_last'.
rows and cols values might have changed due to padding.
| Returns | |
|---|---|
| A tensor of rank 4 representing activation(separableconv2d(inputs, kernel) + bias). | 
| Raises | |
|---|---|
| ValueError | if paddingis "causal". | 
| ValueError | when both strides> 1 anddilation_rate> 1. |