TensorFlow 1 version
|
View source on GitHub
|
Softmax activation function.
tf.keras.layers.Softmax(
axis=-1, **kwargs
)
Example without mask:
inp = np.asarray([1., 2., 1.])layer = tf.keras.layers.Softmax()layer(inp).numpy()array([0.21194157, 0.5761169 , 0.21194157], dtype=float32)mask = np.asarray([True, False, True], dtype=bool)layer(inp, mask).numpy()array([0.5, 0. , 0.5], dtype=float32)
Input shape:
Arbitrary. Use the keyword argument input_shape
(tuple of integers, does not include the samples axis)
when using this layer as the first layer in a model.
Output shape:
Same shape as the input.
Args | |
|---|---|
axis
|
Integer, or list of Integers, axis along which the softmax normalization is applied. |
Call arguments:
inputs: The inputs, or logits to the softmax layer.mask: A boolean mask of the same shape asinputs. Defaults toNone. The mask specifies 1 to keep and 0 to mask.
Returns | |
|---|---|
softmaxed output with the same shape as inputs.
|
TensorFlow 1 version
View source on GitHub