tf.keras.optimizers.Ftrl
Stay organized with collections
Save and categorize content based on your preferences.
Optimizer that implements the FTRL algorithm.
Inherits From: Optimizer
tf.keras.optimizers.Ftrl(
learning_rate=0.001, learning_rate_power=-0.5, initial_accumulator_value=0.1,
l1_regularization_strength=0.0, l2_regularization_strength=0.0,
name='Ftrl', l2_shrinkage_regularization_strength=0.0, beta=0.0,
**kwargs
)
"Follow The Regularized Leader" (FTRL) is an optimization algorithm developed
at Google for click-through rate prediction in the early 2010s. It is most
suitable for shallow models with large and sparse feature spaces.
The algorithm is described by
McMahan et al., 2013.
The Keras version has support for both online L2 regularization
(the L2 regularization described in the paper
above) and shrinkage-type L2 regularization
(which is the addition of an L2 penalty to the loss function).
Initialization:
n = 0
sigma = 0
z = 0
Update rule for one variable w
:
prev_n = n
n = n + g ** 2
sigma = (sqrt(n) - sqrt(prev_n)) / lr
z = z + g - sigma * w
if abs(z) < lambda_1:
w = 0
else:
w = (sgn(z) * lambda_1 - z) / ((beta + sqrt(n)) / alpha + lambda_2)
Notation:
lr
is the learning rate
g
is the gradient for the variable
lambda_1
is the L1 regularization strength
lambda_2
is the L2 regularization strength
Check the documentation for the l2_shrinkage_regularization_strength
parameter for more details when shrinkage is enabled, in which case gradient
is replaced with a gradient with shrinkage.
Args |
learning_rate
|
A Tensor , floating point value, or a schedule that is a
tf.keras.optimizers.schedules.LearningRateSchedule . The learning rate.
|
learning_rate_power
|
A float value, must be less or equal to zero.
Controls how the learning rate decreases during training. Use zero for
a fixed learning rate.
|
initial_accumulator_value
|
The starting value for accumulators.
Only zero or positive values are allowed.
|
l1_regularization_strength
|
A float value, must be greater than or
equal to zero. Defaults to 0.0.
|
l2_regularization_strength
|
A float value, must be greater than or
equal to zero. Defaults to 0.0.
|
name
|
Optional name prefix for the operations created when applying
gradients. Defaults to "Ftrl" .
|
l2_shrinkage_regularization_strength
|
A float value, must be greater than
or equal to zero. This differs from L2 above in that the L2 above is a
stabilization penalty, whereas this L2 shrinkage is a magnitude penalty.
When input is sparse shrinkage will only happen on the active weights.
|
beta
|
A float value, representing the beta value from the paper.
Defaults to 0.0.
|
**kwargs
|
Keyword arguments. Allowed to be one of
"clipnorm" or "clipvalue" .
"clipnorm" (float) clips gradients by norm; "clipvalue" (float) clips
gradients by value.
|
Reference:
Raises |
ValueError
|
in case of any invalid argument.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2021-08-16 UTC.
[null,null,["Last updated 2021-08-16 UTC."],[],[],null,["# tf.keras.optimizers.Ftrl\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/keras/optimizers/Ftrl) | [View source on GitHub](https://github.com/keras-team/keras/tree/master/keras/optimizer_v2/ftrl.py#L25-L263) |\n\nOptimizer that implements the FTRL algorithm.\n\nInherits From: [`Optimizer`](../../../tf/keras/optimizers/Optimizer)\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.optimizers.Ftrl`](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Ftrl)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.optimizers.Ftrl`](https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Ftrl)\n\n\u003cbr /\u003e\n\n tf.keras.optimizers.Ftrl(\n learning_rate=0.001, learning_rate_power=-0.5, initial_accumulator_value=0.1,\n l1_regularization_strength=0.0, l2_regularization_strength=0.0,\n name='Ftrl', l2_shrinkage_regularization_strength=0.0, beta=0.0,\n **kwargs\n )\n\n\"Follow The Regularized Leader\" (FTRL) is an optimization algorithm developed\nat Google for click-through rate prediction in the early 2010s. It is most\nsuitable for shallow models with large and sparse feature spaces.\nThe algorithm is described by\n[McMahan et al., 2013](https://research.google.com/pubs/archive/41159.pdf).\nThe Keras version has support for both online L2 regularization\n(the L2 regularization described in the paper\nabove) and shrinkage-type L2 regularization\n(which is the addition of an L2 penalty to the loss function).\n\n#### Initialization:\n\n n = 0\n sigma = 0\n z = 0\n\nUpdate rule for one variable `w`: \n\n prev_n = n\n n = n + g ** 2\n sigma = (sqrt(n) - sqrt(prev_n)) / lr\n z = z + g - sigma * w\n if abs(z) \u003c lambda_1:\n w = 0\n else:\n w = (sgn(z) * lambda_1 - z) / ((beta + sqrt(n)) / alpha + lambda_2)\n\n#### Notation:\n\n- `lr` is the learning rate\n- `g` is the gradient for the variable\n- `lambda_1` is the L1 regularization strength\n- `lambda_2` is the L2 regularization strength\n\nCheck the documentation for the `l2_shrinkage_regularization_strength`\nparameter for more details when shrinkage is enabled, in which case gradient\nis replaced with a gradient with shrinkage.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `learning_rate` | A `Tensor`, floating point value, or a schedule that is a [`tf.keras.optimizers.schedules.LearningRateSchedule`](../../../tf/keras/optimizers/schedules/LearningRateSchedule). The learning rate. |\n| `learning_rate_power` | A float value, must be less or equal to zero. Controls how the learning rate decreases during training. Use zero for a fixed learning rate. |\n| `initial_accumulator_value` | The starting value for accumulators. Only zero or positive values are allowed. |\n| `l1_regularization_strength` | A float value, must be greater than or equal to zero. Defaults to 0.0. |\n| `l2_regularization_strength` | A float value, must be greater than or equal to zero. Defaults to 0.0. |\n| `name` | Optional name prefix for the operations created when applying gradients. Defaults to `\"Ftrl\"`. |\n| `l2_shrinkage_regularization_strength` | A float value, must be greater than or equal to zero. This differs from L2 above in that the L2 above is a stabilization penalty, whereas this L2 shrinkage is a magnitude penalty. When input is sparse shrinkage will only happen on the active weights. |\n| `beta` | A float value, representing the beta value from the paper. Defaults to 0.0. |\n| `**kwargs` | Keyword arguments. Allowed to be one of `\"clipnorm\"` or `\"clipvalue\"`. `\"clipnorm\"` (float) clips gradients by norm; `\"clipvalue\"` (float) clips gradients by value. |\n\n\u003cbr /\u003e\n\n#### Reference:\n\n- [McMahan et al., 2013](https://research.google.com/pubs/archive/41159.pdf)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|----------------------------------|\n| `ValueError` | in case of any invalid argument. |\n\n\u003cbr /\u003e"]]