tf.raw_ops.RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug
Stay organized with collections
Save and categorize content based on your preferences.
Retrieve Adadelta embedding parameters with debug support.
tf.raw_ops.RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug(
num_shards, shard_id, table_id=-1, table_name='', config='',
name=None
)
An op that retrieves optimization parameters from embedding to host
memory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up
the correct embedding table configuration. For example, this op is
used to retrieve updated parameters before saving a checkpoint.
Args |
num_shards
|
An int .
|
shard_id
|
An int .
|
table_id
|
An optional int . Defaults to -1 .
|
table_name
|
An optional string . Defaults to "" .
|
config
|
An optional string . Defaults to "" .
|
name
|
A name for the operation (optional).
|
Returns |
A tuple of Tensor objects (parameters, accumulators, updates, gradient_accumulators).
|
parameters
|
A Tensor of type float32 .
|
accumulators
|
A Tensor of type float32 .
|
updates
|
A Tensor of type float32 .
|
gradient_accumulators
|
A Tensor of type float32 .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2021-08-16 UTC.
[null,null,["Last updated 2021-08-16 UTC."],[],[],null,["# tf.raw_ops.RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug\n\n\u003cbr /\u003e\n\nRetrieve Adadelta embedding parameters with debug support.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.raw_ops.RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug`](https://www.tensorflow.org/api_docs/python/tf/raw_ops/RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug)\n\n\u003cbr /\u003e\n\n tf.raw_ops.RetrieveTPUEmbeddingAdadeltaParametersGradAccumDebug(\n num_shards, shard_id, table_id=-1, table_name='', config='',\n name=None\n )\n\nAn op that retrieves optimization parameters from embedding to host\nmemory. Must be preceded by a ConfigureTPUEmbeddingHost op that sets up\nthe correct embedding table configuration. For example, this op is\nused to retrieve updated parameters before saving a checkpoint.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|--------------|-----------------------------------------|\n| `num_shards` | An `int`. |\n| `shard_id` | An `int`. |\n| `table_id` | An optional `int`. Defaults to `-1`. |\n| `table_name` | An optional `string`. Defaults to `\"\"`. |\n| `config` | An optional `string`. Defaults to `\"\"`. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|-------------------------|-------------------------------|\n| A tuple of `Tensor` objects (parameters, accumulators, updates, gradient_accumulators). ||\n| `parameters` | A `Tensor` of type `float32`. |\n| `accumulators` | A `Tensor` of type `float32`. |\n| `updates` | A `Tensor` of type `float32`. |\n| `gradient_accumulators` | A `Tensor` of type `float32`. |\n\n\u003cbr /\u003e"]]