tf.raw_ops.UnsortedSegmentSum
Stay organized with collections
Save and categorize content based on your preferences.
Computes the sum along segments of a tensor.
tf.raw_ops.UnsortedSegmentSum(
data, segment_ids, num_segments, name=None
)
Read
the section on segmentation
for an explanation of segments.
Computes a tensor such that
\(output[i] = \sum_{j...} data[j...]\) where the sum is over tuples j...
such
that segment_ids[j...] == i
. Unlike SegmentSum
, segment_ids
need not be sorted and need not cover all values in the full
range of valid values.
If the sum is empty for a given segment ID i
, output[i] = 0
.
If the given segment ID i
is negative, the value is dropped and will not be
added to the sum of the segment.
num_segments
should equal the number of distinct segment IDs.
c = tf.constant([[1,2,3,4], [5,6,7,8], [4,3,2,1]])
tf.math.unsorted_segment_sum(c, tf.constant([0, 1, 0]), num_segments=2)
# ==> [[ 5, 5, 5, 5],
# [5, 6, 7, 8]]
Args |
data
|
A Tensor . Must be one of the following types: float32 , float64 , int32 , uint8 , int16 , int8 , complex64 , int64 , qint8 , quint8 , qint32 , bfloat16 , uint16 , complex128 , half , uint32 , uint64 .
|
segment_ids
|
A Tensor . Must be one of the following types: int32 , int64 .
A tensor whose shape is a prefix of data.shape .
|
num_segments
|
A Tensor . Must be one of the following types: int32 , int64 .
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor . Has the same type as data .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2021-08-16 UTC.
[null,null,["Last updated 2021-08-16 UTC."],[],[],null,["# tf.raw_ops.UnsortedSegmentSum\n\nComputes the sum along segments of a tensor.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.raw_ops.UnsortedSegmentSum`](https://www.tensorflow.org/api_docs/python/tf/raw_ops/UnsortedSegmentSum)\n\n\u003cbr /\u003e\n\n tf.raw_ops.UnsortedSegmentSum(\n data, segment_ids, num_segments, name=None\n )\n\nRead\n[the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation)\nfor an explanation of segments.\n\nComputes a tensor such that\n\\\\(output\\[i\\] = \\\\sum_{j...} data\\[j...\\]\\\\) where the sum is over tuples `j...` such\nthat `segment_ids[j...] == i`. Unlike `SegmentSum`, `segment_ids`\nneed not be sorted and need not cover all values in the full\nrange of valid values.\n\nIf the sum is empty for a given segment ID `i`, `output[i] = 0`.\nIf the given segment ID `i` is negative, the value is dropped and will not be\nadded to the sum of the segment.\n\n`num_segments` should equal the number of distinct segment IDs. \n\n c = tf.constant([[1,2,3,4], [5,6,7,8], [4,3,2,1]])\n tf.math.unsorted_segment_sum(c, tf.constant([0, 1, 0]), num_segments=2)\n # ==\u003e [[ 5, 5, 5, 5],\n # [5, 6, 7, 8]]\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `data` | A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. |\n| `segment_ids` | A `Tensor`. Must be one of the following types: `int32`, `int64`. A tensor whose shape is a prefix of `data.shape`. |\n| `num_segments` | A `Tensor`. Must be one of the following types: `int32`, `int64`. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor`. Has the same type as `data`. ||\n\n\u003cbr /\u003e"]]