TensorFlow 1 version | View source on GitHub |
A distribution strategy for running on a single device.
Inherits From: Strategy
tf.distribute.OneDeviceStrategy(
device
)
Using this strategy will place any variables created in its scope on the
specified device. Input distributed through this strategy will be
prefetched to the specified device. Moreover, any functions called via
strategy.run
will also be placed on the specified device
as well.
Typical usage of this strategy could be testing your code with the tf.distribute.Strategy API before switching to other strategies which actually distribute to multiple devices/machines.
For example:
strategy = tf.distribute.OneDeviceStrategy(device="/gpu:0")
with strategy.scope():
v = tf.Variable(1.0)
print(v.device) # /job:localhost/replica:0/task:0/device:GPU:0
def step_fn(x):
return x * 2
result = 0
for i in range(10):
result += strategy.run(step_fn, args=(i,))
print(result) # 90
Args | |
---|---|
device
|
Device string identifier for the device on which the variables should be placed. See class docs for more details on how the device is used. Examples: "/cpu:0", "/gpu:0", "/device:CPU:0", "/device:GPU:0" |
Attributes | |
---|---|
cluster_resolver
|
Returns the cluster resolver associated with this strategy.
In general, when using a multi-worker Strategies that intend to have an associated
Single-worker strategies usually do not have a
The
For more information, please see
|
extended
|
tf.distribute.StrategyExtended with additional methods.
|
num_replicas_in_sync
|
Returns number of replicas over which gradients are aggregated. |
Methods
distribute_datasets_from_function
distribute_datasets_from_function(
dataset_fn, options=None
)
Distributes tf.data.Dataset
instances created by calls to dataset_fn
.
dataset_fn
will be called once for each worker in the strategy. In this
case, we only have one worker and one device so dataset_fn
is called
once.
The dataset_fn
should take an tf.distribute.InputContext
instance where
information about batching and input replication can be accessed:
def dataset_fn(input_context):
batch_size = input_context.get_per_replica_batch_size(global_batch_size)
d = tf.data.Dataset.from_tensors([[1.]]).repeat().batch(batch_size)
return d.shard(
input_context.num_input_pipelines, input_context.input_pipeline_id)
inputs = strategy.distribute_datasets_from_function(dataset_fn)
for batch in inputs:
replica_results = strategy.run(replica_fn, args=(batch,))
Args | |
---|---|
dataset_fn
|
A function taking a tf.distribute.InputContext instance and
returning a tf.data.Dataset .
|
options
|
tf.distribute.InputOptions used to control options on how this
dataset is distributed.
|
Returns | |
---|---|
A "distributed Dataset ", which the caller can iterate over like regular
datasets.
|
experimental_distribute_dataset
experimental_distribute_dataset(
dataset, options=None
)
Distributes a tf.data.Dataset instance provided via dataset.
In this case, there is only one device, so this is only a thin wrapper around the input dataset. It will, however, prefetch the input data to the specified device. The returned distributed dataset can be iterated over similar to how regular datasets can.
Example:
strategy = tf.distribute.OneDeviceStrategy()
dataset = tf.data.Dataset.range(10).batch(2)
dist_dataset = strategy.experimental_distribute_dataset(dataset)
for x in dist_dataset:
print(x) # [0, 1], [2, 3],...
Args:
dataset: tf.data.Dataset
to be prefetched to device.
options: tf.distribute.InputOptions
used to control options on how this
dataset is distributed.
Returns:
A "distributed Dataset
" that the caller can iterate over.
experimental_distribute_values_from_function
experimental_distribute_values_from_function(
value_fn
)
Generates tf.distribute.DistributedValues
from value_fn
.
This function is to generate tf.distribute.DistributedValues
to pass
into run
, reduce
, or other methods that take
distributed values when not using datasets.
Args | |
---|---|
value_fn
|
The function to run to generate values. It is called for
each replica with tf.distribute.ValueContext as the sole argument. It
must return a Tensor or a type that can be converted to a Tensor.
|
Returns | |
---|---|
A tf.distribute.DistributedValues containing a value for each replica.
|
Example usage:
- Return constant value per replica:
strategy = tf.distribute.MirroredStrategy(["GPU:0", "GPU:1"])
def value_fn(ctx):
return tf.constant(1.)
distributed_values = (
strategy.experimental_distribute_values_from_function(
value_fn))
local_result = strategy.experimental_local_results(distributed_values)
local_result
(<tf.Tensor: shape=(), dtype=float32, numpy=1.0>,
<tf.Tensor: shape=(), dtype=float32, numpy=1.0>)
- Distribute values in array based on replica_id:
strategy = tf.distribute.MirroredStrategy(["GPU:0", "GPU:1"])
array_value = np.array([3., 2., 1.])
def value_fn(ctx):
return array_value[ctx.replica_id_in_sync_group]
distributed_values = (
strategy.experimental_distribute_values_from_function(
value_fn))
local_result = strategy.experimental_local_results(distributed_values)
local_result
(3.0, 2.0)
- Specify values using num_replicas_in_sync:
strategy = tf.distribute.MirroredStrategy(["GPU:0", "GPU:1"])
def value_fn(ctx):
return ctx.num_replicas_in_sync
distributed_values = (
strategy.experimental_distribute_values_from_function(
value_fn))
local_result = strategy.experimental_local_results(distributed_values)
local_result
(2, 2)
- Place values on devices and distribute:
strategy = tf.distribute.TPUStrategy()
worker_devices = strategy.extended.worker_devices
multiple_values = []
for i in range(strategy.num_replicas_in_sync):
with tf.device(worker_devices[i]):
multiple_values.append(tf.constant(1.0))
def value_fn(ctx):
return multiple_values[ctx.replica_id_in_sync_group]
distributed_values = strategy.
experimental_distribute_values_from_function(
value_fn)
experimental_local_results
experimental_local_results(
value
)
Returns the list of all local per-replica values contained in value
.
In OneDeviceStrategy
, the value
is always expected to be a single
value, so the result is just the value in a tuple.
Args | |
---|---|
value
|
A value returned by experimental_run() , run() ,
extended.call_for_each_replica() , or a variable created in scope .
|
Returns | |
---|---|
A tuple of values contained in value . If value represents a single
value, this returns (value,).
|
gather
gather(
value, axis
)
Gather value
across replicas along axis
to the current device.
Given a tf.distribute.DistributedValues
or tf.Tensor
-like
object value
, this API gathers and concatenates value
across replicas
along the axis
-th dimension. The result is copied to the "current" device,
which would typically be the CPU of the worker on which the program is
running. For tf.distribute.TPUStrategy
, it is the first TPU host. For
multi-client tf.distribute.MultiWorkerMirroredStrategy
, this is the CPU of
each worker.
This API can only be called in the cross-replica context. For a counterpart
in the replica context, see tf.distribute.ReplicaContext.all_gather
.
strategy = tf.distribute.MirroredStrategy(["GPU:0", "GPU:1"])
# A DistributedValues with component tensor of shape (2, 1) on each replica
distributed_values = strategy.experimental_distribute_values_from_function(lambda _: tf.identity(tf.constant([[1], [2]])))
@tf.function
def run():
return strategy.gather(distributed_values, axis=0)
run()
<tf.Tensor: shape=(4, 1), dtype=int32, numpy=
array([[1],
[2],
[1],
[2]], dtype=int32)>
Consider the following example for more combinations:
strategy = tf.distribute.MirroredStrategy(["GPU:0", "GPU:1", "GPU:2", "GPU:3"])
single_tensor = tf.reshape(tf.range(6), shape=(1,2,3))
distributed_values = strategy.experimental_distribute_values_from_function(lambda _: tf.identity(single_tensor))
@tf.function
def run(axis):
return strategy.gather(distributed_values, axis=axis)
axis=0
run(axis)
<tf.Tensor: shape=(4, 2, 3), dtype=int32, numpy=
array([[[0, 1, 2],
[3, 4, 5]],
[[0, 1, 2],
[3, 4, 5]],
[[0, 1, 2],
[3, 4, 5]],
[[0, 1, 2],
[3, 4, 5]]], dtype=int32)>
axis=1
run(axis)
<tf.Tensor: shape=(1, 8, 3), dtype=int32, numpy=
array([[[0, 1, 2],
[3, 4, 5],
[0, 1, 2],
[3, 4, 5],
[0, 1, 2],
[3, 4, 5],
[0, 1, 2],
[3, 4, 5]]], dtype=int32)>
axis=2
run(axis)
<tf.Tensor: shape=(1, 2, 12), dtype=int32, numpy=
array([[[0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2],
[3, 4, 5, 3, 4, 5, 3, 4, 5, 3, 4, 5]]], dtype=int32)>
Args | |
---|---|
value
|
a tf.distribute.DistributedValues instance, e.g. returned by
Strategy.run , to be combined into a single tensor. It can also be a
regular tensor when used with tf.distribute.OneDeviceStrategy or the
default strategy. The tensors that constitute the DistributedValues
can only be dense tensors with non-zero rank, NOT a tf.IndexedSlices .
|
axis
|
0-D int32 Tensor. Dimension along which to gather. Must be in the range [0, rank(value)). |
Returns | |
---|---|
A Tensor that's the concatenation of value across replicas along
axis dimension.
|
reduce
reduce(
reduce_op, value, axis
)
Reduce value
across replicas.
In OneDeviceStrategy
, there is only one replica, so if axis=None, value
is simply returned. If axis is specified as something other than None,
such as axis=0, value is reduced along that axis and returned.
Example:
t = tf.range(10)
result = strategy.reduce(tf.distribute.ReduceOp.SUM, t, axis=None).numpy()
# result: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
result = strategy.reduce(tf.distribute.ReduceOp.SUM, t, axis=0).numpy()
# result: 45
Args | |
---|---|
reduce_op
|
A tf.distribute.ReduceOp value specifying how values should
be combined.
|
value
|
A "per replica" value, e.g. returned by run to
be combined into a single tensor.
|
axis
|
Specifies the dimension to reduce along within each
replica's tensor. Should typically be set to the batch dimension, or
None to only reduce across replicas (e.g. if the tensor has no batch
dimension).
|
Returns | |
---|---|
A Tensor .
|
run
run(
fn, args=(), kwargs=None, options=None
)
Run fn
on each replica, with the given arguments.
In OneDeviceStrategy
, fn
is simply called within a device scope for the
given device, with the provided arguments.
Args | |
---|---|
fn
|
The function to run. The output must be a tf.nest of Tensor s.
|
args
|
(Optional) Positional arguments to fn .
|
kwargs
|
(Optional) Keyword arguments to fn .
|
options
|
(Optional) An instance of tf.distribute.RunOptions specifying
the options to run fn .
|
Returns | |
---|---|
Return value from running fn .
|
scope
scope()
Returns a context manager selecting this Strategy as current.
Inside a with strategy.scope():
code block, this thread
will use a variable creator set by strategy
, and will
enter its "cross-replica context".
In OneDeviceStrategy
, all variables created inside strategy.scope()
will be on device
specified at strategy construction time.
See example in the docs for this class.
Returns | |
---|---|
A context manager to use for creating variables with this strategy. |