TensorFlow 1 version
|
View source on GitHub
|
Normalizes along dimension axis using an L2 norm. (deprecated arguments)
tf.math.l2_normalize(
x, axis=None, epsilon=1e-12, name=None, dim=None
)
For a 1-D tensor with axis = 0, computes
output = x / sqrt(max(sum(x**2), epsilon))
For x with more dimensions, independently normalizes each 1-D slice along
dimension axis.
1-D tensor example:
>>> x = tf.constant([3.0, 4.0])
>>> tf.math.l2_normalize(x).numpy()
array([0.6, 0.8], dtype=float32)
2-D tensor example:
>>> x = tf.constant([[3.0], [4.0]])
>>> tf.math.l2_normalize(x, 0).numpy()
array([[0.6],
[0.8]], dtype=float32)
x = tf.constant([[3.0], [4.0]])tf.math.l2_normalize(x, 1).numpy()array([[1.],[1.]], dtype=float32)
Args | |
|---|---|
x
|
A Tensor.
|
axis
|
Dimension along which to normalize. A scalar or a vector of integers. |
epsilon
|
A lower bound value for the norm. Will use sqrt(epsilon) as the
divisor if norm < sqrt(epsilon).
|
name
|
A name for this operation (optional). |
dim
|
Deprecated, do not use. |
Returns | |
|---|---|
A Tensor with the same shape as x.
|
TensorFlow 1 version
View source on GitHub