TensorFlow 1 version
|
View source on GitHub
|
Finds values and indices of the k largest entries for the last dimension.
tf.math.top_k(
input, k=1, sorted=True, name=None
)
If the input is a vector (rank=1), finds the k largest entries in the vector
and outputs their values and indices as vectors. Thus values[j] is the
j-th largest entry in input, and its index is indices[j].
result = tf.math.top_k([1, 2, 98, 1, 1, 99, 3, 1, 3, 96, 4, 1],k=3)result.values.numpy()array([99, 98, 96], dtype=int32)result.indices.numpy()array([5, 2, 9], dtype=int32)
For matrices (resp. higher rank input), computes the top k entries in each
row (resp. vector along the last dimension). Thus,
input = tf.random.normal(shape=(3,4,5,6))k = 2values, indices = tf.math.top_k(input, k=k)values.shape.as_list()[3, 4, 5, 2]values.shape == indices.shape == input.shape[:-1] + [k]True
The indices can be used to gather from a tensor who's shape matches input.
gathered_values = tf.gather(input, indices, batch_dims=-1)assert tf.reduce_all(gathered_values == values)
If two elements are equal, the lower-index element appears first.
result = tf.math.top_k([1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0],k=3)result.indices.numpy()array([0, 1, 3], dtype=int32)
Args | |
|---|---|
input
|
1-D or higher Tensor with last dimension at least k.
|
k
|
0-D int32 Tensor. Number of top elements to look for along the last
dimension (along each row for matrices).
|
sorted
|
If true the resulting k elements will be sorted by the values in
descending order.
|
name
|
Optional name for the operation. |
Returns | |
|---|---|
| A tuple with two named fields: | |
values
|
The k largest elements along each last dimensional slice.
|
indices
|
The indices of values within the last dimension of input.
|
TensorFlow 1 version
View source on GitHub