|  TensorFlow 1 version |  View source on GitHub | 
Average pooling for temporal data.
tf.keras.layers.AveragePooling1D(
    pool_size=2, strides=None, padding='valid',
    data_format='channels_last', **kwargs
)
Downsamples the input representation by taking the average value over the
window defined by pool_size. The window is shifted by strides.  The
resulting output when using "valid" padding option has a shape of:
output_shape = (input_shape - pool_size + 1) / strides)
The resulting output shape when using the "same" padding option is:
output_shape = input_shape / strides
For example, for strides=1 and padding="valid":
x = tf.constant([1., 2., 3., 4., 5.])x = tf.reshape(x, [1, 5, 1])x<tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=array([[[1.],[2.],[3.],[4.],[5.]], dtype=float32)>avg_pool_1d = tf.keras.layers.AveragePooling1D(pool_size=2,strides=1, padding='valid')avg_pool_1d(x)<tf.Tensor: shape=(1, 4, 1), dtype=float32, numpy=array([[[1.5],[2.5],[3.5],[4.5]]], dtype=float32)>
For example, for strides=2 and padding="valid":
x = tf.constant([1., 2., 3., 4., 5.])x = tf.reshape(x, [1, 5, 1])x<tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=array([[[1.],[2.],[3.],[4.],[5.]], dtype=float32)>avg_pool_1d = tf.keras.layers.AveragePooling1D(pool_size=2,strides=2, padding='valid')avg_pool_1d(x)<tf.Tensor: shape=(1, 2, 1), dtype=float32, numpy=array([[[1.5],[3.5]]], dtype=float32)>
For example, for strides=1 and padding="same":
x = tf.constant([1., 2., 3., 4., 5.])x = tf.reshape(x, [1, 5, 1])x<tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=array([[[1.],[2.],[3.],[4.],[5.]], dtype=float32)>avg_pool_1d = tf.keras.layers.AveragePooling1D(pool_size=2,strides=1, padding='same')avg_pool_1d(x)<tf.Tensor: shape=(1, 5, 1), dtype=float32, numpy=array([[[1.5],[2.5],[3.5],[4.5],[5.]]], dtype=float32)>
| Args | |
|---|---|
| pool_size | Integer, size of the average pooling windows. | 
| strides | Integer, or None. Factor by which to downscale.
E.g. 2 will halve the input.
If None, it will default to pool_size. | 
| padding | One of "valid"or"same"(case-insensitive)."valid"means no padding."same"results in padding evenly to
the left/right or up/down of the input such that output has the same
height/width dimension as the input. | 
| data_format | A string,
one of channels_last(default) orchannels_first.
The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch, steps, features)whilechannels_firstcorresponds to inputs with shape(batch, features, steps). | 
Input shape:
- If data_format='channels_last': 3D tensor with shape(batch_size, steps, features).
- If data_format='channels_first': 3D tensor with shape(batch_size, features, steps).
Output shape:
- If data_format='channels_last': 3D tensor with shape(batch_size, downsampled_steps, features).
- If data_format='channels_first': 3D tensor with shape(batch_size, features, downsampled_steps).