|  TensorFlow 1 version |  View source on GitHub | 
Max pooling operation for 2D spatial data.
tf.keras.layers.MaxPool2D(
    pool_size=(2, 2), strides=None, padding='valid', data_format=None,
    **kwargs
)
Downsamples the input along its spatial dimensions (height and width)
by taking the maximum value over an input window
(of size defined by pool_size) for each channel of the input.
The window is shifted by strides along each dimension.
The resulting output,
when using the "valid" padding option, has a spatial shape
(number of rows or columns) of:
output_shape = math.floor((input_shape - pool_size) / strides) + 1
(when input_shape >= pool_size)
The resulting output shape when using the "same" padding option is:
output_shape = math.floor((input_shape - 1) / strides) + 1
For example, for strides=(1, 1) and padding="valid":
x = tf.constant([[1., 2., 3.],[4., 5., 6.],[7., 8., 9.]])x = tf.reshape(x, [1, 3, 3, 1])max_pool_2d = tf.keras.layers.MaxPooling2D(pool_size=(2, 2),strides=(1, 1), padding='valid')max_pool_2d(x)<tf.Tensor: shape=(1, 2, 2, 1), dtype=float32, numpy=array([[[[5.],[6.]],[[8.],[9.]]]], dtype=float32)>
For example, for strides=(2, 2) and padding="valid":
x = tf.constant([[1., 2., 3., 4.],[5., 6., 7., 8.],[9., 10., 11., 12.]])x = tf.reshape(x, [1, 3, 4, 1])max_pool_2d = tf.keras.layers.MaxPooling2D(pool_size=(2, 2),strides=(2, 2), padding='valid')max_pool_2d(x)<tf.Tensor: shape=(1, 1, 2, 1), dtype=float32, numpy=array([[[[6.],[8.]]]], dtype=float32)>
Usage Example:
input_image = tf.constant([[[[1.], [1.], [2.], [4.]],[[2.], [2.], [3.], [2.]],[[4.], [1.], [1.], [1.]],[[2.], [2.], [1.], [4.]]]])output = tf.constant([[[[1], [0]],[[0], [1]]]])model = tf.keras.models.Sequential()model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2),input_shape=(4, 4, 1)))model.compile('adam', 'mean_squared_error')model.predict(input_image, steps=1)array([[[[2.],[4.]],[[4.],[4.]]]], dtype=float32)
For example, for stride=(1, 1) and padding="same":
x = tf.constant([[1., 2., 3.],[4., 5., 6.],[7., 8., 9.]])x = tf.reshape(x, [1, 3, 3, 1])max_pool_2d = tf.keras.layers.MaxPooling2D(pool_size=(2, 2),strides=(1, 1), padding='same')max_pool_2d(x)<tf.Tensor: shape=(1, 3, 3, 1), dtype=float32, numpy=array([[[[5.],[6.],[6.]],[[8.],[9.],[9.]],[[8.],[9.],[9.]]]], dtype=float32)>
| Args | |
|---|---|
| pool_size | integer or tuple of 2 integers,
window size over which to take the maximum. (2, 2)will take the max value over a 2x2 pooling window.
If only one integer is specified, the same window length
will be used for both dimensions. | 
| strides | Integer, tuple of 2 integers, or None.
Strides values.  Specifies how far the pooling window moves
for each pooling step. If None, it will default to pool_size. | 
| padding | One of "valid"or"same"(case-insensitive)."valid"means no padding."same"results in padding evenly to
the left/right or up/down of the input such that output has the same
height/width dimension as the input. | 
| data_format | A string,
one of channels_last(default) orchannels_first.
The ordering of the dimensions in the inputs.channels_lastcorresponds to inputs with shape(batch, height, width, channels)whilechannels_firstcorresponds to inputs with shape(batch, channels, height, width).
It defaults to theimage_data_formatvalue found in your
Keras config file at~/.keras/keras.json.
If you never set it, then it will be "channels_last". | 
Input shape:
- If data_format='channels_last': 4D tensor with shape(batch_size, rows, cols, channels).
- If data_format='channels_first': 4D tensor with shape(batch_size, channels, rows, cols).
Output shape:
- If data_format='channels_last': 4D tensor with shape(batch_size, pooled_rows, pooled_cols, channels).
- If data_format='channels_first': 4D tensor with shape(batch_size, channels, pooled_rows, pooled_cols).
| Returns | |
|---|---|
| A tensor of rank 4 representing the maximum pooled values. See above for output shape. |