|  TensorFlow 1 version |  View source on GitHub | 
Rectified Linear Unit activation function.
tf.keras.layers.ReLU(
    max_value=None, negative_slope=0, threshold=0, **kwargs
)
With default values, it returns element-wise max(x, 0).
Otherwise, it follows:
  f(x) = max_value if x >= max_value
  f(x) = x if threshold <= x < max_value
  f(x) = negative_slope * (x - threshold) otherwise
Usage:
layer = tf.keras.layers.ReLU()output = layer([-3.0, -1.0, 0.0, 2.0])list(output.numpy())[0.0, 0.0, 0.0, 2.0]layer = tf.keras.layers.ReLU(max_value=1.0)output = layer([-3.0, -1.0, 0.0, 2.0])list(output.numpy())[0.0, 0.0, 0.0, 1.0]layer = tf.keras.layers.ReLU(negative_slope=1.0)output = layer([-3.0, -1.0, 0.0, 2.0])list(output.numpy())[-3.0, -1.0, 0.0, 2.0]layer = tf.keras.layers.ReLU(threshold=1.5)output = layer([-3.0, -1.0, 1.0, 2.0])list(output.numpy())[0.0, 0.0, 0.0, 2.0]
Input shape:
Arbitrary. Use the keyword argument input_shape
(tuple of integers, does not include the batch axis)
when using this layer as the first layer in a model.
Output shape:
Same shape as the input.
| Args | |
|---|---|
| max_value | Float >= 0. Maximum activation value. Default to None, which means unlimited. | 
| negative_slope | Float >= 0. Negative slope coefficient. Default to 0. | 
| threshold | Float >= 0. Threshold value for thresholded activation. Default to 0. |