|  TensorFlow 1 version |  View source on GitHub | 
Computes the hinge loss between y_true and y_pred.
Inherits From: Loss
tf.keras.losses.Hinge(
    reduction=losses_utils.ReductionV2.AUTO, name='hinge'
)
loss = maximum(1 - y_true * y_pred, 0)
y_true values are expected to be -1 or 1. If binary (0 or 1) labels are
provided we will convert them to -1 or 1.
Standalone usage:
y_true = [[0., 1.], [0., 0.]]y_pred = [[0.6, 0.4], [0.4, 0.6]]# Using 'auto'/'sum_over_batch_size' reduction type.h = tf.keras.losses.Hinge()h(y_true, y_pred).numpy()1.3
# Calling with 'sample_weight'.h(y_true, y_pred, sample_weight=[1, 0]).numpy()0.55
# Using 'sum' reduction type.h = tf.keras.losses.Hinge(reduction=tf.keras.losses.Reduction.SUM)h(y_true, y_pred).numpy()2.6
# Using 'none' reduction type.h = tf.keras.losses.Hinge(reduction=tf.keras.losses.Reduction.NONE)h(y_true, y_pred).numpy()array([1.1, 1.5], dtype=float32)
Usage with the compile() API:
model.compile(optimizer='sgd', loss=tf.keras.losses.Hinge())
| Args | |
|---|---|
| reduction | Type of tf.keras.losses.Reductionto apply to
loss. Default value isAUTO.AUTOindicates that the reduction
option will be determined by the usage context. For almost all cases
this defaults toSUM_OVER_BATCH_SIZE. When used withtf.distribute.Strategy, outside of built-in training loops such astf.kerascompileandfit, usingAUTOorSUM_OVER_BATCH_SIZEwill raise an error. Please see this custom training tutorial for
    more details. | 
| name | Optional name for the instance. Defaults to 'hinge'. | 
Methods
from_config
@classmethodfrom_config( config )
Instantiates a Loss from its config (output of get_config()).
| Args | |
|---|---|
| config | Output of get_config(). | 
| Returns | |
|---|---|
| A Lossinstance. | 
get_config
get_config()
Returns the config dictionary for a Loss instance.
__call__
__call__(
    y_true, y_pred, sample_weight=None
)
Invokes the Loss instance.
| Args | |
|---|---|
| y_true | Ground truth values. shape = [batch_size, d0, .. dN], except
sparse loss functions such as sparse categorical crossentropy where
shape =[batch_size, d0, .. dN-1] | 
| y_pred | The predicted values. shape = [batch_size, d0, .. dN] | 
| sample_weight | Optional sample_weightacts as a coefficient for the
loss. If a scalar is provided, then the loss is simply scaled by the
given value. Ifsample_weightis a tensor of size[batch_size], then
the total loss for each sample of the batch is rescaled by the
corresponding element in thesample_weightvector. If the shape ofsample_weightis[batch_size, d0, .. dN-1](or can be broadcasted to
this shape), then each loss element ofy_predis scaled
by the corresponding value ofsample_weight. (Note ondN-1: all loss
  functions reduce by 1 dimension, usually axis=-1.) | 
| Returns | |
|---|---|
| Weighted loss float Tensor. IfreductionisNONE, this has
shape[batch_size, d0, .. dN-1]; otherwise, it is scalar. (NotedN-1because all loss functions reduce by 1 dimension, usually axis=-1.) | 
| Raises | |
|---|---|
| ValueError | If the shape of sample_weightis invalid. |