|  TensorFlow 1 version |  View source on GitHub | 
Computes the crossentropy loss between the labels and predictions.
Inherits From: Loss
tf.keras.losses.SparseCategoricalCrossentropy(
    from_logits=False, reduction=losses_utils.ReductionV2.AUTO,
    name='sparse_categorical_crossentropy'
)
Use this crossentropy loss function when there are two or more label classes.
We expect labels to be provided as integers. If you want to provide labels
using one-hot representation, please use CategoricalCrossentropy loss.
There should be # classes floating point values per feature for y_pred
and a single floating point value per feature for y_true.
In the snippet below, there is a single floating point value per example for
y_true and # classes floating pointing values per example for y_pred.
The shape of y_true is [batch_size] and the shape of y_pred is
[batch_size, num_classes].
Standalone usage:
y_true = [1, 2]y_pred = [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]# Using 'auto'/'sum_over_batch_size' reduction type.scce = tf.keras.losses.SparseCategoricalCrossentropy()scce(y_true, y_pred).numpy()1.177
# Calling with 'sample_weight'.scce(y_true, y_pred, sample_weight=tf.constant([0.3, 0.7])).numpy()0.814
# Using 'sum' reduction type.scce = tf.keras.losses.SparseCategoricalCrossentropy(reduction=tf.keras.losses.Reduction.SUM)scce(y_true, y_pred).numpy()2.354
# Using 'none' reduction type.scce = tf.keras.losses.SparseCategoricalCrossentropy(reduction=tf.keras.losses.Reduction.NONE)scce(y_true, y_pred).numpy()array([0.0513, 2.303], dtype=float32)
Usage with the compile() API:
model.compile(optimizer='sgd',
              loss=tf.keras.losses.SparseCategoricalCrossentropy())
| Args | |
|---|---|
| from_logits | Whether y_predis expected to be a logits tensor. By
default, we assume thaty_predencodes a probability distribution. | 
| reduction | Type of tf.keras.losses.Reductionto apply to
loss. Default value isAUTO.AUTOindicates that the reduction
option will be determined by the usage context. For almost all cases
this defaults toSUM_OVER_BATCH_SIZE. When used withtf.distribute.Strategy, outside of built-in training loops such astf.kerascompileandfit, usingAUTOorSUM_OVER_BATCH_SIZEwill raise an error. Please see this custom training tutorial for
    more details. | 
| name | Optional name for the instance. Defaults to 'sparse_categorical_crossentropy'. | 
Methods
from_config
@classmethodfrom_config( config )
Instantiates a Loss from its config (output of get_config()).
| Args | |
|---|---|
| config | Output of get_config(). | 
| Returns | |
|---|---|
| A Lossinstance. | 
get_config
get_config()
Returns the config dictionary for a Loss instance.
__call__
__call__(
    y_true, y_pred, sample_weight=None
)
Invokes the Loss instance.
| Args | |
|---|---|
| y_true | Ground truth values. shape = [batch_size, d0, .. dN], except
sparse loss functions such as sparse categorical crossentropy where
shape =[batch_size, d0, .. dN-1] | 
| y_pred | The predicted values. shape = [batch_size, d0, .. dN] | 
| sample_weight | Optional sample_weightacts as a coefficient for the
loss. If a scalar is provided, then the loss is simply scaled by the
given value. Ifsample_weightis a tensor of size[batch_size], then
the total loss for each sample of the batch is rescaled by the
corresponding element in thesample_weightvector. If the shape ofsample_weightis[batch_size, d0, .. dN-1](or can be broadcasted to
this shape), then each loss element ofy_predis scaled
by the corresponding value ofsample_weight. (Note ondN-1: all loss
  functions reduce by 1 dimension, usually axis=-1.) | 
| Returns | |
|---|---|
| Weighted loss float Tensor. IfreductionisNONE, this has
shape[batch_size, d0, .. dN-1]; otherwise, it is scalar. (NotedN-1because all loss functions reduce by 1 dimension, usually axis=-1.) | 
| Raises | |
|---|---|
| ValueError | If the shape of sample_weightis invalid. |