|  View source on GitHub | 
Computes Huber loss value.
tf.keras.losses.huber(
    y_true, y_pred, delta=1.0
)
For each value x in error = y_true - y_pred:
loss = 0.5 * x^2                  if |x| <= d
loss = d * |x| - 0.5 * d^2        if |x| > d
where d is delta. See: https://en.wikipedia.org/wiki/Huber_loss
| Args | |
|---|---|
| y_true | tensor of true targets. | 
| y_pred | tensor of predicted targets. | 
| delta | A float, the point where the Huber loss function changes from a quadratic to linear. | 
| Returns | |
|---|---|
| Tensor with one scalar loss entry per sample. |