|  TensorFlow 1 version |  View source on GitHub | 
Computes the crossentropy metric between the labels and predictions.
Inherits From: MeanMetricWrapper, Mean, Metric, Layer, Module
tf.keras.metrics.SparseCategoricalCrossentropy(
    name='sparse_categorical_crossentropy', dtype=None, from_logits=False,
    axis=-1
)
Use this crossentropy metric when there are two or more label classes.
We expect labels to be provided as integers. If you want to provide labels
using one-hot representation, please use CategoricalCrossentropy metric.
There should be # classes floating point values per feature for y_pred
and a single floating point value per feature for y_true.
In the snippet below, there is a single floating point value per example for
y_true and # classes floating pointing values per example for y_pred.
The shape of y_true is [batch_size] and the shape of y_pred is
[batch_size, num_classes].
| Args | |
|---|---|
| name | (Optional) string name of the metric instance. | 
| dtype | (Optional) data type of the metric result. | 
| from_logits | (Optional) Whether output is expected to be a logits tensor. By default, we consider that output encodes a probability distribution. | 
| axis | (Optional) Defaults to -1. The dimension along which the metric is computed. | 
Standalone usage:
# y_true = one_hot(y_true) = [[0, 1, 0], [0, 0, 1]]# logits = log(y_pred)# softmax = exp(logits) / sum(exp(logits), axis=-1)# softmax = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]]# xent = -sum(y * log(softmax), 1)# log(softmax) = [[-2.9957, -0.0513, -16.1181],# [-2.3026, -0.2231, -2.3026]]# y_true * log(softmax) = [[0, -0.0513, 0], [0, 0, -2.3026]]# xent = [0.0513, 2.3026]# Reduced xent = (0.0513 + 2.3026) / 2m = tf.keras.metrics.SparseCategoricalCrossentropy()m.update_state([1, 2],[[0.05, 0.95, 0], [0.1, 0.8, 0.1]])m.result().numpy()1.1769392
m.reset_state()m.update_state([1, 2],[[0.05, 0.95, 0], [0.1, 0.8, 0.1]],sample_weight=tf.constant([0.3, 0.7]))m.result().numpy()1.6271976
Usage with compile() API:
model.compile(
  optimizer='sgd',
  loss='mse',
  metrics=[tf.keras.metrics.SparseCategoricalCrossentropy()])
Methods
reset_state
reset_state()
Resets all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
result
result()
Computes and returns the metric value tensor.
Result computation is an idempotent operation that simply calculates the metric value using the state variables.
update_state
update_state(
    y_true, y_pred, sample_weight=None
)
Accumulates metric statistics.
For sparse categorical metrics, the shapes of y_true and y_pred are
different.
| Args | |
|---|---|
| y_true | Ground truth label values. shape = [batch_size, d0, .. dN-1]or
shape =[batch_size, d0, .. dN-1, 1]. | 
| y_pred | The predicted probability values. shape = [batch_size, d0, .. dN]. | 
| sample_weight | Optional sample_weightacts as a
coefficient for the metric. If a scalar is provided, then the metric is
simply scaled by the given value. Ifsample_weightis a tensor of size[batch_size], then the metric for each sample of the batch is rescaled
by the corresponding element in thesample_weightvector. If the shape
ofsample_weightis[batch_size, d0, .. dN-1](or can be broadcasted
to this shape), then each metric element ofy_predis scaled by the
corresponding value ofsample_weight. (Note ondN-1: all metric
functions reduce by 1 dimension, usually the last axis (-1)). | 
| Returns | |
|---|---|
| Update op. |