Converts a class vector (integers) to binary class matrix.
tf.keras.utils.to_categorical(
    y, num_classes=None, dtype='float32'
)
E.g. for use with categorical_crossentropy.
| Args | 
|---|
| y | class vector to be converted into a matrix
(integers from 0 to num_classes). | 
| num_classes | total number of classes. If None, this would be inferred
as the (largest number iny) + 1. | 
| dtype | The data type expected by the input. Default: 'float32'. | 
| Returns | 
|---|
| A binary matrix representation of the input. The classes axis is placed
last. | 
Example:
a = tf.keras.utils.to_categorical([0, 1, 2, 3], num_classes=4)
a = tf.constant(a, shape=[4, 4])
print(a)
tf.Tensor(
  [[1. 0. 0. 0.]
   [0. 1. 0. 0.]
   [0. 0. 1. 0.]
   [0. 0. 0. 1.]], shape=(4, 4), dtype=float32)
b = tf.constant([.9, .04, .03, .03,
                 .3, .45, .15, .13,
                 .04, .01, .94, .05,
                 .12, .21, .5, .17],
                shape=[4, 4])
loss = tf.keras.backend.categorical_crossentropy(a, b)
print(np.around(loss, 5))
[0.10536 0.82807 0.1011  1.77196]
loss = tf.keras.backend.categorical_crossentropy(a, a)
print(np.around(loss, 5))
[0. 0. 0. 0.]
| Raises | 
|---|
| Value Error: If input contains string value |