Computes gradient of the FractionalMaxPool function.
tf.raw_ops.FractionalMaxPoolGrad(
    orig_input, orig_output, out_backprop, row_pooling_sequence,
    col_pooling_sequence, overlapping=False, name=None
)
| Args | |
|---|---|
| orig_input | A Tensor. Must be one of the following types:float32,float64,int32,int64.
Original input forfractional_max_pool | 
| orig_output | A Tensor. Must have the same type asorig_input.
Original output forfractional_max_pool | 
| out_backprop | A Tensor. Must have the same type asorig_input.
4-D with shape[batch, height, width, channels].  Gradients
w.r.t. the output offractional_max_pool. | 
| row_pooling_sequence | A Tensorof typeint64.
row pooling sequence, form pooling region with
col_pooling_sequence. | 
| col_pooling_sequence | A Tensorof typeint64.
column pooling sequence, form pooling region with
row_pooling sequence. | 
| overlapping | An optional bool. Defaults toFalse.
When set to True, it means when pooling, the values at the boundary
of adjacent pooling cells are used by both cells. For example:
 
 If the pooling sequence is [0, 2, 4], then 16, at index 2 will be used twice. The result would be [20, 16] for fractional max pooling. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensor. Has the same type asorig_input. |