Converts a sparse representation into a dense tensor.
tf.raw_ops.SparseToDense(
    sparse_indices, output_shape, sparse_values, default_value,
    validate_indices=True, name=None
)
Builds an array dense with shape output_shape such that
# If sparse_indices is scalar
dense[i] = (i == sparse_indices ? sparse_values : default_value)
# If sparse_indices is a vector, then for each i
dense[sparse_indices[i]] = sparse_values[i]
# If sparse_indices is an n by d matrix, then for each i in [0, n)
dense[sparse_indices[i][0], ..., sparse_indices[i][d-1]] = sparse_values[i]
All other values in dense are set to default_value.  If sparse_values is a
scalar, all sparse indices are set to this single value.
Indices should be sorted in lexicographic order, and indices must not
contain any repeats. If validate_indices is true, these properties
are checked during execution.
| Args | |
|---|---|
| sparse_indices | A Tensor. Must be one of the following types:int32,int64.
0-D, 1-D, or 2-D.sparse_indices[i]contains the complete
index wheresparse_values[i]will be placed. | 
| output_shape | A Tensor. Must have the same type assparse_indices.
1-D.  Shape of the dense output tensor. | 
| sparse_values | A Tensor.
1-D.  Values corresponding to each row ofsparse_indices,
or a scalar value to be used for all sparse indices. | 
| default_value | A Tensor. Must have the same type assparse_values.
Scalar value to set for indices not specified insparse_indices. | 
| validate_indices | An optional bool. Defaults toTrue.
If true, indices are checked to make sure they are sorted in
lexicographic order and that there are no repeats. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensor. Has the same type assparse_values. |