The Glorot normal initializer, also called Xavier normal initializer.
Inherits From: VarianceScaling
tf.compat.v1.keras.initializers.glorot_normal(
    seed=None,
    dtype=tf.dtypes.float32
)
It draws samples from a truncated normal distribution centered on 0
with standard deviation (after truncation) given by
stddev = sqrt(2 / (fan_in + fan_out)) where fan_in is the number
of input units in the weight tensor and fan_out is the number of
output units in the weight tensor.
Args | 
seed
 | 
A Python integer. Used to create random seeds. See
tf.compat.v1.set_random_seed for behavior.
 | 
dtype
 | 
Default data type, used if no dtype argument is provided when
calling the initializer. Only floating point types are supported.
 | 
Methods
from_config
View source
@classmethod
from_config(
    config
)
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
| Args | 
config
 | 
A Python dictionary. It will typically be the output of
get_config.
 | 
| Returns | 
| 
An Initializer instance.
 | 
get_config
View source
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
| Returns | 
| 
A JSON-serializable Python dict.
 | 
__call__
View source
__call__(
    shape, dtype=None, partition_info=None
)
Returns a tensor object initialized as specified by the initializer.
| Args | 
shape
 | 
Shape of the tensor.
 | 
dtype
 | 
Optional dtype of the tensor. If not provided use the initializer
dtype.
 | 
partition_info
 | 
Optional information about the possible partitioning of a
tensor.
 |