tf.keras.metrics.mean_squared_error

Computes the mean squared error between labels and predictions.

Main aliases

tf.keras.losses.MSE, tf.keras.losses.mean_squared_error, tf.keras.losses.mse, tf.keras.metrics.MSE, tf.keras.metrics.mse

Compat aliases for migration

See Migration guide for more details.

`tf.compat.v1.keras.losses.MSE`, `tf.compat.v1.keras.losses.mean_squared_error`, `tf.compat.v1.keras.losses.mse`, `tf.compat.v1.keras.metrics.MSE`, `tf.compat.v1.keras.metrics.mean_squared_error`, `tf.compat.v1.keras.metrics.mse`

After computing the squared distance between the inputs, the mean value over the last dimension is returned.

loss = mean(square(y_true - y_pred), axis=-1)

Standalone usage:

y_true = np.random.randint(0, 2, size=(2, 3))
y_pred = np.random.random(size=(2, 3))
loss = tf.keras.losses.mean_squared_error(y_true, y_pred)
assert loss.shape == (2,)
assert np.array_equal(
    loss.numpy(), np.mean(np.square(y_true - y_pred), axis=-1))

y_true Ground truth values. shape = [batch_size, d0, .. dN].
y_pred The predicted values. shape = [batch_size, d0, .. dN].

Mean squared error values. shape = [batch_size, d0, .. dN-1].