tf.type_spec_from_value
Returns a tf.TypeSpec
that represents the given value
.
tf.type_spec_from_value(
value
) -> tf.TypeSpec
Examples |
>>> tf.type_spec_from_value(tf.constant([1, 2, 3]))
TensorSpec(shape=(3,), dtype=tf.int32, name=None)
>>> tf.type_spec_from_value(np.array([4.0, 5.0], np.float64))
TensorSpec(shape=(2,), dtype=tf.float64, name=None)
>>> tf.type_spec_from_value(tf.ragged.constant([[1, 2], [3, 4, 5]]))
RaggedTensorSpec(TensorShape([2, None]), tf.int32, 1, tf.int64)
example_input = tf.ragged.constant([[1, 2], [3]])
@tf.function(input_signature=[tf.type_spec_from_value(example_input)])
def f(x):
return tf.reduce_sum(x, axis=1)
|
Returns |
A TypeSpec that is compatible with value .
|
Raises |
TypeError
|
If a TypeSpec cannot be built for value , because its type
is not supported.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-03-17 UTC.
[null,null,["Last updated 2023-03-17 UTC."],[],[]]