tf.keras.metrics.hinge
Computes the hinge loss between y_true
and y_pred
.
View aliases
Main aliases
tf.keras.losses.hinge
Compat aliases for migration
See
Migration guide for
more details.
`tf.compat.v1.keras.losses.hinge`, `tf.compat.v1.keras.metrics.hinge`
tf.keras.metrics.hinge(
y_true, y_pred
)
loss = mean(maximum(1 - y_true * y_pred, 0), axis=-1)
Standalone usage:
y_true = np.random.choice([-1, 1], size=(2, 3))
y_pred = np.random.random(size=(2, 3))
loss = tf.keras.losses.hinge(y_true, y_pred)
assert loss.shape == (2,)
assert np.array_equal(
loss.numpy(),
np.mean(np.maximum(1. - y_true * y_pred, 0.), axis=-1))
Args |
y_true
|
The ground truth values. y_true values are expected to be -1 or 1.
If binary (0 or 1) labels are provided they will be converted to -1 or 1.
shape = [batch_size, d0, .. dN] .
|
y_pred
|
The predicted values. shape = [batch_size, d0, .. dN] .
|
Returns |
Hinge loss values. shape = [batch_size, d0, .. dN-1] .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[]]