View source on GitHub
  
 | 
Initializer that generates a truncated normal distribution.
Inherits From: Initializer
tf.keras.initializers.TruncatedNormal(
    mean=0.0, stddev=0.05, seed=None
)
Also available via the shortcut function
tf.keras.initializers.truncated_normal.
The values generated are similar to values from a
tf.keras.initializers.RandomNormal initializer except that values more
than two standard deviations from the mean are
discarded and re-drawn.
Examples:
# Standalone usage:initializer = tf.keras.initializers.TruncatedNormal(mean=0., stddev=1.)values = initializer(shape=(2, 2))
# Usage in a Keras layer:initializer = tf.keras.initializers.TruncatedNormal(mean=0., stddev=1.)layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)
Methods
from_config
@classmethodfrom_config( config )
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
| Args | |
|---|---|
config
 | 
A Python dictionary, the output of get_config.
 | 
| Returns | |
|---|---|
A tf.keras.initializers.Initializer instance.
 | 
get_config
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
| Returns | |
|---|---|
| A JSON-serializable Python dict. | 
__call__
__call__(
    shape, dtype=None, **kwargs
)
Returns a tensor object initialized to random normal values (truncated).
| Args | |
|---|---|
shape
 | 
Shape of the tensor. | 
dtype
 | 
Optional dtype of the tensor. Only floating point types are
supported. If not specified, tf.keras.backend.floatx() is used, which
default to float32 unless you configured it otherwise (via
tf.keras.backend.set_floatx(float_dtype))
 | 
**kwargs
 | 
Additional keyword arguments. | 
    View source on GitHub