tf.keras.metrics.sparse_categorical_accuracy
Stay organized with collections
Save and categorize content based on your preferences.
Calculates how often predictions match integer labels.
View aliases
Compat aliases for migration
See
Migration guide for
more details.
`tf.compat.v1.keras.metrics.sparse_categorical_accuracy`
tf.keras.metrics.sparse_categorical_accuracy(
y_true, y_pred
)
Standalone usage:
y_true = [2, 1]
y_pred = [[0.1, 0.9, 0.8], [0.05, 0.95, 0]]
m = tf.keras.metrics.sparse_categorical_accuracy(y_true, y_pred)
assert m.shape == (2,)
m.numpy()
array([0., 1.], dtype=float32)
You can provide logits of classes as y_pred
, since argmax of
logits and probabilities are same.
Args |
y_true
|
Integer ground truth values.
|
y_pred
|
The prediction values.
|
Returns |
Sparse categorical accuracy values.
|