tf.data.experimental.Reducer
Stay organized with collections
Save and categorize content based on your preferences.
A reducer is used for reducing a set of elements.
tf.data.experimental.Reducer(
init_func, reduce_func, finalize_func
)
A reducer is represented as a tuple of the three functions:
- init_func - to define initial value: key => initial state
- reducer_func - operation to perform on values with same key: (old state, input) => new state
- finalize_func - value to return in the end: state => result
For example,
def init_func(_):
return (0.0, 0.0)
def reduce_func(state, value):
return (state[0] + value['features'], state[1] + 1)
def finalize_func(s, n):
return s / n
reducer = tf.data.experimental.Reducer(init_func, reduce_func, finalize_func)
Attributes |
finalize_func
|
|
init_func
|
|
reduce_func
|
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-03-17 UTC.
[null,null,["Last updated 2023-03-17 UTC."],[],[],null,["# tf.data.experimental.Reducer\n\n\u003cbr /\u003e\n\n|---------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.9.3/tensorflow/python/data/experimental/ops/grouping.py#L388-L428) |\n\nA reducer is used for reducing a set of elements.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.data.experimental.Reducer`](https://www.tensorflow.org/api_docs/python/tf/data/experimental/Reducer)\n\n\u003cbr /\u003e\n\n tf.data.experimental.Reducer(\n init_func, reduce_func, finalize_func\n )\n\nA reducer is represented as a tuple of the three functions:\n\n- init_func - to define initial value: key =\\\u003e initial state\n- reducer_func - operation to perform on values with same key: (old state, input) =\\\u003e new state\n- finalize_func - value to return in the end: state =\\\u003e result\n\nFor example, \n\n def init_func(_):\n return (0.0, 0.0)\n\n def reduce_func(state, value):\n return (state[0] + value['features'], state[1] + 1)\n\n def finalize_func(s, n):\n return s / n\n\n reducer = tf.data.experimental.Reducer(init_func, reduce_func, finalize_func)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Attributes ---------- ||\n|-----------------|---------------|\n| `finalize_func` | \u003cbr /\u003e \u003cbr /\u003e |\n| `init_func` | \u003cbr /\u003e \u003cbr /\u003e |\n| `reduce_func` | \u003cbr /\u003e \u003cbr /\u003e |\n\n\u003cbr /\u003e"]]