tf.data.experimental.parse_example_dataset
Stay organized with collections
Save and categorize content based on your preferences.
A transformation that parses Example
protos into a dict
of tensors.
tf.data.experimental.parse_example_dataset(
features, num_parallel_calls=1, deterministic=None
)
Parses a number of serialized Example
protos given in serialized
. We refer
to serialized
as a batch with batch_size
many entries of individual
Example
protos.
This op parses serialized examples into a dictionary mapping keys to Tensor
,
SparseTensor
, and RaggedTensor
objects. features
is a dict from keys to
VarLenFeature
, RaggedFeature
, SparseFeature
, and FixedLenFeature
objects. Each VarLenFeature
and SparseFeature
is mapped to a
SparseTensor
; each RaggedFeature
is mapped to a RaggedTensor
; and each
FixedLenFeature
is mapped to a Tensor
. See tf.io.parse_example
for more
details about feature dictionaries.
Args |
features
|
A dict mapping feature keys to FixedLenFeature ,
VarLenFeature , RaggedFeature , and SparseFeature values.
|
num_parallel_calls
|
(Optional.) A tf.int32 scalar tf.Tensor ,
representing the number of parsing processes to call in parallel.
|
deterministic
|
(Optional.) A boolean controlling whether determinism
should be traded for performance by allowing elements to be produced out
of order if some parsing calls complete faster than others. If
deterministic is None , the
tf.data.Options.deterministic dataset option (True by default) is used
to decide whether to produce elements deterministically.
|
Raises |
ValueError
|
if features argument is None.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-03-17 UTC.
[null,null,["Last updated 2023-03-17 UTC."],[],[],null,["# tf.data.experimental.parse_example_dataset\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.9.3/tensorflow/python/data/experimental/ops/parsing_ops.py#L106-L160) |\n\nA transformation that parses `Example` protos into a `dict` of tensors.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.data.experimental.parse_example_dataset`](https://www.tensorflow.org/api_docs/python/tf/data/experimental/parse_example_dataset)\n\n\u003cbr /\u003e\n\n tf.data.experimental.parse_example_dataset(\n features, num_parallel_calls=1, deterministic=None\n )\n\nParses a number of serialized `Example` protos given in `serialized`. We refer\nto `serialized` as a batch with `batch_size` many entries of individual\n`Example` protos.\n\nThis op parses serialized examples into a dictionary mapping keys to `Tensor`,\n`SparseTensor`, and `RaggedTensor` objects. `features` is a dict from keys to\n`VarLenFeature`, `RaggedFeature`, `SparseFeature`, and `FixedLenFeature`\nobjects. Each `VarLenFeature` and `SparseFeature` is mapped to a\n`SparseTensor`; each `RaggedFeature` is mapped to a `RaggedTensor`; and each\n`FixedLenFeature` is mapped to a `Tensor`. See [`tf.io.parse_example`](../../../tf/io/parse_example) for more\ndetails about feature dictionaries.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `features` | A `dict` mapping feature keys to `FixedLenFeature`, `VarLenFeature`, `RaggedFeature`, and `SparseFeature` values. |\n| `num_parallel_calls` | (Optional.) A [`tf.int32`](../../../tf#int32) scalar [`tf.Tensor`](../../../tf/Tensor), representing the number of parsing processes to call in parallel. |\n| `deterministic` | (Optional.) A boolean controlling whether determinism should be traded for performance by allowing elements to be produced out of order if some parsing calls complete faster than others. If `deterministic` is `None`, the [`tf.data.Options.deterministic`](../../../tf/data/Options#deterministic) dataset option (`True` by default) is used to decide whether to produce elements deterministically. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A dataset transformation function, which can be passed to [`tf.data.Dataset.apply`](../../../tf/data/Dataset#apply). ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|-------------------------------|\n| `ValueError` | if features argument is None. |\n\n\u003cbr /\u003e"]]