View source on GitHub
|
Computes the cross-entropy loss between true labels and predicted labels.
Inherits From: Loss
tf.keras.losses.BinaryCrossentropy(
from_logits=False,
label_smoothing=0.0,
axis=-1,
reduction=losses_utils.ReductionV2.AUTO,
name='binary_crossentropy'
)
Use this cross-entropy loss for binary (0 or 1) classification applications. The loss function requires the following inputs:
y_true(true label): This is either 0 or 1.y_pred(predicted value): This is the model's prediction, i.e, a single floating-point value which either represents a logit, (i.e, value in [-inf, inf] whenfrom_logits=True) or a probability (i.e, value in [0., 1.] whenfrom_logits=False).
Recommended Usage: (set from_logits=True)
With tf.keras API:
model.compile(
loss=tf.keras.losses.BinaryCrossentropy(from_logits=True),
....
)
As a standalone function:
# Example 1: (batch_size = 1, number of samples = 4)y_true = [0, 1, 0, 0]y_pred = [-18.6, 0.51, 2.94, -12.8]bce = tf.keras.losses.BinaryCrossentropy(from_logits=True)bce(y_true, y_pred).numpy()0.865
# Example 2: (batch_size = 2, number of samples = 4)y_true = [[0, 1], [0, 0]]y_pred = [[-18.6, 0.51], [2.94, -12.8]]# Using default 'auto'/'sum_over_batch_size' reduction type.bce = tf.keras.losses.BinaryCrossentropy(from_logits=True)bce(y_true, y_pred).numpy()0.865# Using 'sample_weight' attributebce(y_true, y_pred, sample_weight=[0.8, 0.2]).numpy()0.243# Using 'sum' reduction` type.bce = tf.keras.losses.BinaryCrossentropy(from_logits=True,reduction=tf.keras.losses.Reduction.SUM)bce(y_true, y_pred).numpy()1.730# Using 'none' reduction type.bce = tf.keras.losses.BinaryCrossentropy(from_logits=True,reduction=tf.keras.losses.Reduction.NONE)bce(y_true, y_pred).numpy()array([0.235, 1.496], dtype=float32)
Default Usage: (set from_logits=False)
# Make the following updates to the above "Recommended Usage" section# 1. Set `from_logits=False`tf.keras.losses.BinaryCrossentropy() # OR ...('from_logits=False')# 2. Update `y_pred` to use probabilities instead of logitsy_pred = [0.6, 0.3, 0.2, 0.8] # OR [[0.6, 0.3], [0.2, 0.8]]
Args | |
|---|---|
from_logits
|
Whether to interpret y_pred as a tensor of
logit values. By default, we
assume that y_pred contains probabilities (i.e., values in [0, 1]).
|
label_smoothing
|
Float in [0, 1]. When 0, no smoothing occurs. When > 0,
we compute the loss between the predicted labels and a smoothed version
of the true labels, where the smoothing squeezes the labels towards 0.5.
Larger values of label_smoothing correspond to heavier smoothing.
|
axis
|
The axis along which to compute crossentropy (the features axis). Defaults to -1. |
reduction
|
Type of tf.keras.losses.Reduction to apply to
loss. Default value is AUTO. AUTO indicates that the reduction
option will be determined by the usage context. For almost all cases
this defaults to SUM_OVER_BATCH_SIZE. When used with
tf.distribute.Strategy, outside of built-in training loops such as
tf.keras compile and fit, using AUTO or SUM_OVER_BATCH_SIZE
will raise an error. Please see this custom training tutorial for
more details.
|
name
|
Name for the op. Defaults to 'binary_crossentropy'. |
Methods
from_config
@classmethodfrom_config( config )
Instantiates a Loss from its config (output of get_config()).
| Args | |
|---|---|
config
|
Output of get_config().
|
| Returns | |
|---|---|
A Loss instance.
|
get_config
get_config()
Returns the config dictionary for a Loss instance.
__call__
__call__(
y_true, y_pred, sample_weight=None
)
Invokes the Loss instance.
| Args | |
|---|---|
y_true
|
Ground truth values. shape = [batch_size, d0, .. dN], except
sparse loss functions such as sparse categorical crossentropy where
shape = [batch_size, d0, .. dN-1]
|
y_pred
|
The predicted values. shape = [batch_size, d0, .. dN]
|
sample_weight
|
Optional sample_weight acts as a coefficient for the
loss. If a scalar is provided, then the loss is simply scaled by the
given value. If sample_weight is a tensor of size [batch_size], then
the total loss for each sample of the batch is rescaled by the
corresponding element in the sample_weight vector. If the shape of
sample_weight is [batch_size, d0, .. dN-1] (or can be broadcasted to
this shape), then each loss element of y_pred is scaled
by the corresponding value of sample_weight. (Note ondN-1: all loss
functions reduce by 1 dimension, usually axis=-1.)
|
| Returns | |
|---|---|
Weighted loss float Tensor. If reduction is NONE, this has
shape [batch_size, d0, .. dN-1]; otherwise, it is scalar. (Note dN-1
because all loss functions reduce by 1 dimension, usually axis=-1.)
|
| Raises | |
|---|---|
ValueError
|
If the shape of sample_weight is invalid.
|
View source on GitHub