Returns a batched matrix tensor with new batched diagonal values.
tf.raw_ops.MatrixSetDiagV2(
input, diagonal, k, name=None
)
Given input and diagonal, this operation returns a tensor with the
same shape and values as input, except for the specified diagonals of the
innermost matrices. These will be overwritten by the values in diagonal.
input has r+1 dimensions [I, J, ..., L, M, N]. When k is scalar or
k[0] == k[1], diagonal has r dimensions [I, J, ..., L, max_diag_len].
Otherwise, it has r+1 dimensions [I, J, ..., L, num_diags, max_diag_len].
num_diags is the number of diagonals, num_diags = k[1] - k[0] + 1.
max_diag_len is the longest diagonal in the range [k[0], k[1]],
max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))
The output is a tensor of rank k+1 with dimensions [I, J, ..., L, M, N].
If k is scalar or k[0] == k[1]:
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, n-max(k[1], 0)] ; if n - m == k[1]
input[i, j, ..., l, m, n] ; otherwise
Otherwise,
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] <= d <= k[1]
input[i, j, ..., l, m, n] ; otherwise
where d = n - m, diag_index = k[1] - d, and index_in_diag = n - max(d, 0).
For example:
# The main diagonal.
input = np.array([[[7, 7, 7, 7], # Input shape: (2, 3, 4)
[7, 7, 7, 7],
[7, 7, 7, 7]],
[[7, 7, 7, 7],
[7, 7, 7, 7],
[7, 7, 7, 7]]])
diagonal = np.array([[1, 2, 3], # Diagonal shape: (2, 3)
[4, 5, 6]])
tf.matrix_set_diag(diagonal) ==> [[[1, 7, 7, 7], # Output shape: (2, 3, 4)
[7, 2, 7, 7],
[7, 7, 3, 7]],
[[4, 7, 7, 7],
[7, 5, 7, 7],
[7, 7, 6, 7]]]
# A superdiagonal (per batch).
tf.matrix_set_diag(diagonal, k = 1)
==> [[[7, 1, 7, 7], # Output shape: (2, 3, 4)
[7, 7, 2, 7],
[7, 7, 7, 3]],
[[7, 4, 7, 7],
[7, 7, 5, 7],
[7, 7, 7, 6]]]
# A band of diagonals.
diagonals = np.array([[[1, 2, 3], # Diagonal shape: (2, 2, 3)
[4, 5, 0]],
[[6, 1, 2],
[3, 4, 0]]])
tf.matrix_set_diag(diagonals, k = (-1, 0))
==> [[[1, 7, 7, 7], # Output shape: (2, 3, 4)
[4, 2, 7, 7],
[0, 5, 3, 7]],
[[6, 7, 7, 7],
[3, 1, 7, 7],
[7, 4, 2, 7]]]
Returns | |
|---|---|
A Tensor. Has the same type as input.
|