View source on GitHub
|
Type specification for tf.data.Iterator.
Inherits From: TypeSpec
tf.data.IteratorSpec(
element_spec
)
For instance, tf.data.IteratorSpec can be used to define a tf.function that
takes tf.data.Iterator as an input argument:
@tf.function(input_signature=[tf.data.IteratorSpec(tf.TensorSpec(shape=(), dtype=tf.int32, name=None))])def square(iterator):x = iterator.get_next()return x * xdataset = tf.data.Dataset.from_tensors(5)iterator = iter(dataset)print(square(iterator))tf.Tensor(25, shape=(), dtype=int32)
Attributes | |
|---|---|
element_spec
|
A (nested) structure of tf.TypeSpec objects that represents
the type specification of the iterator elements.
|
value_type
|
The Python type for values that are compatible with this TypeSpec.
In particular, all values that are compatible with this TypeSpec must be an instance of this type. |
Methods
from_value
@staticmethodfrom_value( value )
is_compatible_with
is_compatible_with(
spec_or_value
)
Returns true if spec_or_value is compatible with this TypeSpec.
most_specific_compatible_type
most_specific_compatible_type(
other
)
Returns the most specific TypeSpec compatible with self and other.
| Args | |
|---|---|
other
|
A TypeSpec.
|
| Raises | |
|---|---|
ValueError
|
If there is no TypeSpec that is compatible with both self
and other.
|
__eq__
__eq__(
other
)
Return self==value.
__ne__
__ne__(
other
)
Return self!=value.
View source on GitHub