View source on GitHub
  
 | 
Type specification for tf.data.Dataset.
Inherits From: TypeSpec, TraceType
tf.data.DatasetSpec(
    element_spec, dataset_shape=()
)
See tf.TypeSpec for more information about TensorFlow type specifications.
dataset = tf.data.Dataset.range(3)tf.data.DatasetSpec.from_value(dataset)DatasetSpec(TensorSpec(shape=(), dtype=tf.int64, name=None), TensorShape([]))
Methods
from_value
@staticmethodfrom_value( value )
Creates a DatasetSpec for the given tf.data.Dataset value.
is_compatible_with
is_compatible_with(
    spec_or_value
)
Returns true if spec_or_value is compatible with this TypeSpec.
Prefer using "is_subtype_of" and "most_specific_common_supertype" wherever possible.
| Args | |
|---|---|
spec_or_value
 | 
A TypeSpec or TypeSpec associated value to compare against. | 
is_subtype_of
is_subtype_of(
    other
)
See base class.
most_specific_common_supertype
most_specific_common_supertype(
    others
)
See base class.
most_specific_compatible_type
most_specific_compatible_type(
    other: 'TypeSpec'
) -> 'TypeSpec'
Returns the most specific TypeSpec compatible with self and other. (deprecated)
Deprecated. Please use most_specific_common_supertype instead.
Do not override this function.
| Args | |
|---|---|
other
 | 
A TypeSpec.
 | 
| Raises | |
|---|---|
ValueError
 | 
If there is no TypeSpec that is compatible with both self
and other.
 | 
__eq__
__eq__(
    other
)
Return self==value.
__ne__
__ne__(
    other
) -> bool
Return self!=value.
    View source on GitHub